用户名: 密码: 验证码:
基于TIMED/SABER卫星温度数据对大气经验模型的评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data
  • 作者:程旋 ; 肖存英 ; 胡雄 ; 杨钧烽
  • 英文作者:CHENG Xuan;XIAO CunYing;HU Xiong;YANG JunFeng;Laboratory of Near Space Environment, National Space Science Center, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:大气模型 ; 温度 ; TIMED/SABER ; NRLMSISE-00 ; USSA-76 ; 评估
  • 英文关键词:atmospheric model;;temperature;;TIMED/SABER;;NRLMSISE-00;;USSA-76;;evaluation
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:中国科学院国家空间科学中心临近空间环境研究室;中国科学院大学;
  • 出版日期:2018-10-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2018
  • 期:v.48
  • 基金:国家重点研究发展计划(编号:2016YFB0501503);; 高分青年基金项目(编号:GFZX04061502)资助项目
  • 语种:中文;
  • 页:JGXK201810008
  • 页数:15
  • CN:10
  • ISSN:11-5848/N
  • 分类号:79-93
摘要
以TIMED/SABER观测的2002–2016年共计15年的全球温度数据为标准,与USSA-76及NRLMSISE-00模式温度数据对比分析.通过计算大气模式与卫星观测的温度偏差、温度偏差的标准差及均方根误差,分析两种大气模型的适用性.通过设置模式与卫星观测温度偏差,计算不同纬度地区温度偏差要求下模式的置信度.结果表明:(1)两个大气模型计算的温度数据与卫星观测的温度数据随高度的变化具有较好的一致性;(2) NRLMSISE-00模式的日平均和月平均精度高于USSA-76模式;(3)两个大气模式在冬夏季高纬地区及中纬地区UMLT高度表征真实大气的能力有待提高, NRLMSISE-00模式表征真实大气的能力整体优于USSA-76模式;(4)同一模式在相同纬度地区和温度偏差要求下,置信度随着高度的升高而降低;相同的高度和温度偏差要求下,置信度随着纬度的升高而降低.通过分析USSA-76和NRLMSISE-00模式与卫星观测数据之间的差异,对大气模式在工程中的应用提供参考,为大气模式的后续修正提供依据.
        A total of 15 years of global temperature data from 2002–2016 as measured by TIMED/SABER were taken as standard to compare with those of USSA-76 and NRLMSISE-00. The accuracy of the two atmospheric models was analyzed by calculating daily mean and monthly mean temperature deviations and standard deviations of temperature deviations at different altitudes. The confidence of the model under different temperature deviations is calculated through setting the deviation between the models and the satellite observation temperature. The results show that the temperature data calculated by the two atmospheric models are in good agreement with the temperature observed by satellite. The daily mean and monthly mean accuracy of the NRLMSISE-00 are higher than those of the USSA-76. In the UMLT region, the two atmospheric models have yet to be improved to characterize the true atmosphere at the mid-high latitudes of upper mesosphere in summer and winter. The overall ability of the NRLMSISE-00 to represent the true atmosphere is superior to the USSA-76. In addition, the confidence decreases with the increase of altitude in the same latitude area and temperature deviation requirements. The confidence decreases with increasing latitude in the same altitude and temperature deviation requirements. By analyzing the differences between the atmospheric models and satellite observations. This paper provides a reference for the application of atmospheric models in engineering and provides the basis for the subsequent correction of atmospheric modes.
引文
1 Kim S I, Rahman H, Hassan I. Effect of turbine inlet temperature on rotor blade tip leakage flow and heat transfer. Int Jnl Num Meth HFF, 2012,22 :73–93
    2 Rahman M H, Kim S I, Hassan I. Effects of inlet temperature uniformity and nonuniformity on the tip leakage flow and rotor blade tip and casing heat transfer characteristics. J Turbomach, 2012, 134:021001
    3 The U. S. Committee on Extension to the Standard Atmosphere(COESA). U. S. Standard Atmosphere, 1976. Washington D C:U. S. Government Printing Office, 1976
    4 Justus C G, Jeffries III W R, Yung S P, et al. The NASA/MSFC Global Reference Atmospheric Model-1995 Version(GRAM-95). Technical Report, National Aeronautics and Space Administration, 1995
    5 Hedin A E. MSIS-86 Thermospheric Model. J Geophys Res, 1987, 92:4649–4662
    6 Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res, 1991, 96:1159–1172
    7 Chen X X, Hu X, Xiao C Y, et al. Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model(in Chinese). Chin J Geophys, 2013, 56:3246–3254[陈旭杏,胡雄,肖存英,等.基于卫星数据和NRLMSISE-00模型的低轨道大气密度预报修正方法.地球物理学报, 2013, 56:3246–3254]
    8 Weng L B, Fang H X, Ji C H, et al. Comparison between the CHAMP/STAR derived thermospheric density and the NRLMSISE-00 model(in Chinese). Chin J Space Sci, 2012, 32:713–719[翁利斌,方涵先,季春华,等.基于卫星加速度数据反演的热层大气密度与NRLMSISE-00模式结果的比较研究.空间科学学报, 2012, 32:713–719]
    9 Chen L, Liu D, Deng Z X, et al. Accuracy analysis and applicability of the atmosphere model(in Chinese). Chin J Radio Sci, 2014, 29:774–779[陈亮,刘钝,邓忠新,等.大气模型的适用性分析及应用研究.电波科学学报, 2014, 29:774–779]
    10 Picone J M, Hedin A E, Drob D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues. J Geophys Res, 2002, 107:SIA 15-1–SIA 15-16
    11 Wang H B, Zhao C Y. Use CHAMP/STAR accelerometer data to evaluate atmospheric density models during solar maximum year(in Chinese).Acta Astron Sin, 2008, 49:169–178[汪宏波,赵长印.用CHAMP加速仪数据校验太阳活动峰年的大气模型精度.天文学报, 2008, 49:169–178]
    12 Wan T, Liu H W, Fan J. Error band and confidence coefficient of atmospheric density models around altitude 100 km(in Chinese). Sci Sin-Phys Mech Astron, 2015, 45:124706[万田,刘洪伟,樊菁. 100 km附近大气密度模型的误差带和置信度.中国科学:物理学力学天文学, 2015,45:124706]
    13 Xu J Y, Ji Q, Yuan W, et al. Comparisonbetween the TIMED observed global temperature distribution and the NRLMSISE-00 empirical atmospheric model(in Chinese). Chin J Space Sci, 2006, 26:177–182[徐寄遥,纪巧,袁,等. TIMED卫星探测的全球大气温度分布及其与经验模式的比较.空间科学学报, 2006, 26:177–182]
    14 Mertens C J, Russell III J M, Mlynczak M G, et al. Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Adv Space Res, 2009, 43:15–27
    15 Cao W X, Zhang S D, Yi F, et al. Variation of the mesopause observed by SABER/TIMED satellite(in Chinese). Chin J Geophys, 2012, 55:2489–2497[操文祥,张绍东,易帆,等.中间层顶变化的SABER/TIMED卫星观测.地球物理学报, 2012, 55:2489–2497]
    16 Huang F T, Mayr H G, Reber C A, et al. Diurnal variations of temperature and winds inferred from TIMED and UARS measurements. J Geophys Res, 2006, 111:A10S04
    17 Huang F T, Mc Peters R D, Bhartia P K, et al. Temperature diurnal variations(migrating tides)in the stratosphere and lower mesosphere based on measurements from SABER on TIMED. J Geophys Res, 2010, 115:D16121
    18 Zhang X, Forbes J M, Hagan M E, et al. Monthly tidal temperatures 20–120 km from TIMED/SABER. J Geophys Res, 2006, 111:A10S08
    19 Wrasse C M, Fechine J, Takahashi H, et al. Temperature comparison between CHAMP radio occultation and TIMED/SABER measurements in the lower stratosphere. Adv Space Res, 2008, 41:1423–1428
    20 Gong X Y, Hu X, Wu X C. et al. Comparison of temperature measurement between COSMIC atmospheric radio occultation and SABER/TIMED(in Chinese). Chin J Geophys, 2013, 56:2152–2162[宫晓艳,胡雄,吴小成,等. COSMIC大气掩星与SABER/TIMED探测温度数据比较.地球物理学报, 2013, 56:2152–2162]
    21 Xiao C Y, Hu X, Wang B, et al. Quantitative studies on the variations of near space atmospheric fluctuation(in Chinese). Chin J Geophys, 2016,59 :1211–1221[肖存英,胡雄,王博,等.临近空间大气扰动变化特性的定量研究.地球物理学报, 2016, 59:1211–1221]
    22 Xiao C, Hu X, Tian J. Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER. J Geophys Res,2009, 114:D17101
    23 Chen Z Y, Lv D R. Seasonal variations of the MLT tides in 120°E meridian(in Chinese). Chin J Geophys, 2007, 50:691–700[陈泽宇,吕达仁.东经120°E中间层和低热层大气潮汐及其季节变化特征.地球物理学报, 2007, 50:691–700]
    24 Chen Z Y, Lv D R. Satellite remote sensing of the characteristics of MLT mean temperatures in the 120°E meridian:The mesopause(in Chinese).Chin J Geophys, 2008, 51:982–990[陈泽宇,吕达仁.卫星遥感东经120°子午圈MLT典型温度结构中间层顶统计分析.地球物理学报, 2008,51 :982–990]
    25 Yue C, Yang G, Wang J, et al. Lidar observations of the middle atmospheric thermal structure over north China and comparisons with TIMED/SABER. J Atmos Sol-Terrestrial Phys, 2014, 120:80–87
    26 Fechine J, Wrasse C M, Takahashi H, et al. Lower-mesospheric inversion layers over brazilian equatorial region using TIMED/SABER temperature profiles. Adv Space Res, 2008, 41:1447–1453
    27 Xiao C Y, Hu X, Yang J F, et al. Studies on the characteristics of atmospheric density at 38oN in nearspace and its modeling technique(in Chinese). J Beijing Univ Aeronaut Astron, 2016, doi:10.13700/j.bh.1001-5965.2016.0735[肖存英,胡雄,杨钧峰,等.临近空间38°N大气密度特性及建模技术研究.北京航空航天大学学报, doi:10.13700/j.bh.1001-5965.2016.0735]
    28 Offermann D, Jarisch M, Oberheide J, et al. Global wave activity from upper stratosphere to lower thermosphere:A new turbopause concept. J Atmos Sol-Terrestrial Phys, 2006, 68:1709–1729
    29 Offermann D, Gusev O, Donner M, et al. Relative intensities of middle atmosphere waves. J Geophys Res, 2009, 114:605–617
    30 Yi F, Klostermeyer J, Ruester R. VHF radar observation of gravity wave critical layers in the mid-latitude summer mesopause region. Geophys Res Lett, 1991, 18:697–700
    31 Dong L W. Mesospheric temperature inversion layers:Recent observations from UARS ISAMS and MLS. Recent Res Devel Geophys, 1999, 3:37 –44
    32 Williams B P. Gravity waves in the arctic mesosphere during the Ma CWAVE/MIDAS summer rocket program. Geophys Res Lett, 2004, 31:L24S05

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700