用户名: 密码: 验证码:
地下储气库热力耦合数值分析动态边界条件研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of dynamic boundary conditions for thermo-mechanical coupling analysis of underground gas storage cavern
  • 作者:蒋中明 ; 刘澧源 ; 赵海斌 ; 唐栋 ; 胡炜 ; 梅松华 ; 李鹏
  • 英文作者:JIANG Zhong-ming;LIU Li-yuan;ZHAO Hai-bin;TANG Dong;HU Wei;MEI Song-hua;LI Peng;School of Hydraulic Engineering, Changsha University of Science & Technology;Key Laboratory of Water-Sediment Sciences and Water Disaster prevention of Hunan Province, Changsha University of Science & Technology;PowerChina Zhongnan Engineering Corporation Limited;
  • 关键词:压气储能 ; 地下储气库 ; 热力耦合分析 ; 边界条件
  • 英文关键词:compressed air energy storage;;underground rock cavern;;coupling thermo-mechanical analysis;;boundary conditions
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:长沙理工大学水利工程学院;长沙理工大学水沙科学与水灾害防治湖南省重点实验室;中国电建中南勘测设计研究院有限公司;
  • 出版日期:2018-09-05 14:52
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.300
  • 基金:国家自然科学基金资助项目(No.51778070);; 中国电建集团科技计划项目(No.GW-KJ-2012-26-02)~~
  • 语种:中文;
  • 页:YTLX201903036
  • 页数:9
  • CN:03
  • ISSN:42-1199/O3
  • 分类号:328-336
摘要
为获取地下储气库围岩热力耦合效应数值分析的边界条件,基于压缩空气质量和能量守恒方程,提出了利用FLAC3D软件求解压缩空气热力学过程及储气库围岩热力耦合数值分析边界条件的确定方法,通过算例验证了压缩空气热力学过程计算方法的正确性。采用数值分析方法研究了充放气条件下的储气库洞壁边界条件的变化特点,分析了围岩初始温度、对流换热系数以及热传导系数对边界条件变化过程的影响。研究表明:地下储气库力学及传热分析边界在运行过程中具有十分显著的动态变化特点,并与压缩空气的状态、洞壁表面热交换特性及围岩热传导特性密切相关。
        To obtain the boundary conditions for coupling thermo-mechanical simulation of underground caverns for compressed gas storage, based on the mass and energy conservation equations of compressed air, a calculation method for the solution of thermodynamic process analysis of compressed air and determination of boundary conditions of coupling thermo-mechanical simulation was proposed in software FLAC3 D. The calculation method for thermodynamic process analysis of compressed gas was also validated by an example cited in the paper. The variation characteristics of boundary conditions acting on the cavern wall under the situation of charging and discharging were explored with numerical simulation method. The influences of the initial temperature,the convective heat transfer coefficient and the thermal conductivity of the surrounding rock on the boundary conditions of the cavern wall were also analyzed. The research results show that the boundary of mechanics and heat transfer analysis of underground gas storage cavern has a remarkable dynamic change during operation, which is closely related to the state of compressed air, the heat exchange characteristics of cavern wall surface and the heat conduction characteristics of surrounding rock.
引文
[1]余耀,孙华,许俊斌,等.压缩空气储能技术综述[J].装备机械,2013(1):68-74.YU Yao,SUN Hua,XU Jun-bin,et al.Technical review of compressed air energy storage(CAES)[J].Equipment Machinery,2013(1):68-74.
    [2]SUCCAR S,WILLIAMS R H.Compressed air energy storage:theory,resources,and applications for wind power[R].[S.l.]:[s.n.],2008.
    [3]KUSHNIR R,ULLMANN A,DAYAN A.Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs:a review[J].Reviews in Chemical Engineering,2012,28:123-148.
    [4]RUTQVIST J,KIM H M,RYU D W,et al.Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J].International Journal of Rock Mechanics and Mining Sciences,2012,52(3):71-81.
    [5]KUSHNIR R,DAYAN A,ULLMANN A.Temperature and pressure variations within compressed air energy storage caverns[J].International Journal of Heat and Mass Transfer,2012,55(21-22):5616-5630.
    [6]XIA C C,ZHOU Y,ZHOU S W,et al.A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J].Renewable Energy,2015,74:718-726.
    [7]ZHOU Y,XIA C C,ZHAO H B,et al.An iterative method for evaluating air leakage from unlined compressed air energy storage(CAES)caverns[J].Renewable Energy,2018,120:434-445.
    [8]刘燕,赵耀宗,于玉良.天然气内衬岩洞式地下储气库热力学工况探析[J].煤气与热力,2016(2):27-31.LIU Yan,ZHAO Yao-zong,YU Yu-liang.Analysis of thermodynamic conditions of natural gas lined cavern gas storage[J].Gas&Heat,2016(2):27-31.
    [9]刘澧源,蒋中明,王江营,等.压气储能电站地下储气库之压缩空气热力学过程分析[J].储能科学与技术,2018,7(2):232-239.LIU Li-yuan,JIANG Zhong-ming,WANG Jiang-yin,et al.Thermodynamic analysis of compressed air energy storage in a underground rock cavern[J].Energy Storage Science and Technology,2018,7(2):232-239.
    [10]陈剑文,蒋卫东,杨春和,等.储气库注、采气过程热工分析研究[J].岩石力学与工程学报,2007,26(增刊1):2887-2894.CHEN Jian-wen,JIANG Wei-dong,YANG Chun-he,et al.Study on engineering thermal analysis of gas storage in slat formation during gas injection and production[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Suppl.1):288-2894.
    [11]曹琳,谭羽非,李娜.盐穴地下储气库注采热工性能模拟[J].天然气工业,2005,25(8):103-105+14-15.CAO Lin,TAN Yu-fei,LI Na.Simulation of injection/recovery thermo-dynamic performance for underground gas storages with salt caverns[J].Natural Gas Industry,2005,25(8):103-105+14-15.
    [12]ZHOU S W,XIA C C,DU S G,et al.An analytical solution for mechanical responses induced by temperature and air pressure in a lined rock cavern for underground compressed air energy storage[J].Rock Mechanics and Rock Engineering,2014,48(2):749-770.
    [13]周瑜,夏才初,赵海斌,等.压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J].岩石力学与工程学报,2017,36(2):297-309.ZHOU Yu,XIA Cai-chu,ZHAO Hai-bin,et al.A method for the estimation of air leakage through inner seals and mechanical responses of the surrounding rock of lined rock caverns(LRCs)for compressed air energy storage(CAES)[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(2):297-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700