用户名: 密码: 验证码:
玻璃微珠和ZrB_2改性石英酚醛复合材料的耐烧蚀性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhanced Ablation Resistance of Glass Beads and ZrB_2 Modified SiO_2 (f)-Phenolic Composites
  • 作者:李茂源 ; 卢林 ; 戴珍 ; 洪义强 ; 陈为为 ; 张玉平 ; 乔英杰
  • 英文作者:LI Maoyuan;LU Lin;DAI Zhen;HONG Yiqiang;CHEN Weiwei;ZHANG Yuping;QIAO Yingjie;Colleage of Material Science and Chemical Engineering,Harbin Engineering University;Beijing System Design Institute of Electro-mechanic Engineering;Department of Materials Science and Engineering,Beijing Institute of Technology;
  • 关键词:玻璃微珠 ; ZrB_2颗粒 ; 石英/酚醛复合材料 ; 烧蚀性能
  • 英文关键词:glass bead;;ZrB_2;;SiO_2 (f)-Phenolic composites;;ablation resistance
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:哈尔滨工程大学材料科学与化学工程学院;北京机电工程总体设计部;北京理工大学材料学院;
  • 出版日期:2019-04-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金青年基金(51401024)~~
  • 语种:中文;
  • 页:CLDB201908011
  • 页数:5
  • CN:08
  • ISSN:50-1078/TB
  • 分类号:55-59
摘要
在石英/酚醛防热复合材料中引入玻璃微珠和ZrB_2颗粒,旨在提高其耐冲刷、烧蚀性能。采用氧乙炔烧蚀试验测试所得石英/酚醛复合材料的耐烧蚀性能,对比分析了玻璃微珠和ZrB_2颗粒对低密度和全密度石英/酚醛材料烧蚀机理和烧蚀性能的影响。结果表明,在低密度石英酚醛复合材料中掺入适量的ZrB_2颗粒能使复合材料在烧蚀表面形成熔覆层,该熔覆层能有效保护碳化层及基体材料,降低线烧蚀率和质量烧蚀率。而表面熔覆层的形成与ZrO_2在硅系熔融物中产生的"钉锚效应"相关,同时也与B_2O_3降低硅系熔融物的表面能有关。在全密度石英酚醛复合材料中引入ZrB_2颗粒,可使其在烧蚀过程中形成多孔的ZrO_2层,有效地将碳化层和烧蚀环境隔离。然而,ZrO_2层没有熔融铺展,与碳化层结合力较弱,在烧蚀过程中容易剥落。
        Glass beads and ZrB_2 particles were introduced into SiO_2 (f)-Phenolic(S-Ph) heat resistant composite,for the sake of enhancing its erosion resistance and ablative properties. The ablation resistance of the glass beads and ZrB_2 modified S-Ph composite were measured by oxygenacetylene ablation test,and the effects of glass beads and ZrB_2 particles on the ablation mechanism and ablation resistance of full-density and low-density S-Ph composites were analyzed and compared. As could be seen from the results,adding appropriate amount of ZrB_2 to the low-density S-Ph composites contributed to the formation of a cladding layer on the ablative surface,which was highly protective to the carbide layer and the matrix material,and capable of reducing the linear ablation rate and the mass ablation rate. The formation of cladding layer on the surface was derived from the"pining-effect"produced by ZrO_2 in melted silica,as well as the reduced surface energy of melted silica by B_2O_3. The introduction of ZrO_2 particles into the full-density S-Ph composites induced the formation of porous ZrO_2 layer in the ablative process,which effectively isolate the carbide layer from the ablative environment. Nevertheless,the ZrO_2 layer did not spread by melting and weakly adhered to the carbide layer,therefore it is apt to peel off in the ablative process.
引文
1 Liu S Q,Ning P S,Ding Z M.Thermosetting Resin,2016,31(5),64(in Chinese).刘世强,宁培森,丁著明.热固性树脂,2016,31(5),64.
    2 Ma C,Ma Z,Gao L H,et al.Chinese Optics,2017,10(2),249(in Chinese).马琛,马壮,高丽红,等.中国光学,2017,10(2),249.
    3 Yu Q C,Wang H.Journal of Inorganic Materials,2012,27(2),157(in Chinese).于庆春,万红.无机材料学报,2012,27(2),157.
    4 Liu D,Wu G M,Kong Z W.Journal of Applied Polymer Science,2017,44342,1.
    5 Bu Z Y,Hu J J,Li B G.Thermochimica Acta,2014,575(10),244.
    6 Sun C M,Lu D B,Sun Y.Fiber Reinforced Plastics/Composites,2018(10),102(in Chinese).孙超明,卢东滨,孙燚.玻璃钢/复合材料,2018(10),102.
    7 Bian L P,Xiao J Y,Zeng J C,et al.Materials and Design,2014,62,424.
    8 Maria L,Gregori Edson A,Barros Gilberto P,et al.Aerospace Science Technology,2009,1(1),63.
    9 Sagar S.Polymer Engineering and Science,2014,6,162.
    10 Xiao J,Fan H T,Zhou H T.Surface Technology,2014,43(2),150(in Chinese).肖军,樊会涛,周惠娣.表面技术,2014,43(2),150.
    11 Beaudet J,Benoit G,Cormier J,et al.Materials Sciences and Applications,2011,2,1399.
    12 Chen L X,Feng J J,Heng J.China patent,CN201510835808.6,2015(in Chinese).陈立新,冯俊君,衡杰,中国专利,CN201510835808.6,2015.
    13 Sun Y,Shi L P,Zhou C L,et al.Key Engineering Materials,2016,697,428.
    14 Guo Z H,Tian H D,Li H,et al.In:2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon 2017.
    15 Krzyzak A,Kucharczyk W,Gaska J,et al.Composite Structures,2018,202(15),978.
    16 Bakar M,Kucharczyk W,Stawarz S.Polymers and Polymer Composites,2016,24(8),617.
    17 Bakar M,Kostrzewa M,Bialkowska A,et al.High Performance Polymers,2014,26(3),299.
    18 Alagar M,Ashok Kumar A,Mahesh K P O,et al.European Polymer Journal,2000,36,2449.
    19 Kucharczyk W,Dusiński D,Zurowski W,et al.Composite Structures,2018,183,654.
    20 Lacroix F,Allheily V,Diener K,et al.Composite Structures,2016,143,220.
    21 He C,Su H,Lu W,et al.Surface Technology,2018,47(5),167(in Chinese).贺晨,苏峘,卢鹉,等.表面技术,2018,47(5),167.
    22 Park J K,Kang T J.Carbon,2002,40,2125.
    23 Hong C Q,Han J C,Zhang X H,et al.Composites Part B:Engineering,2011,43,2389.
    24 Abdalla M O,Ludwick A,Mitchell T.Polymer,2003,44,7353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700