用户名: 密码: 验证码:
计及并联补偿高抗的电力系统对次同步振荡的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of sub-synchronous oscillation of power system with shunt reactors
  • 作者:张航 ; 滕予非 ; 王晓茹 ; 钟锐
  • 英文作者:ZHANG Hang;TENG Yufei;WANG Xiaoru;ZHONG Rui;School of Electrical Engineering, Southwest Jiaotong University;State Grid Sichuan Electrical Power Research Institute;
  • 关键词:次同步振荡 ; 并联补偿高抗 ; 模态分析 ; 轴系扭振 ; 电力系统仿真
  • 英文关键词:sub-synchronous oscillation;;shunt reactors;;modal analysis;;shaft torsional vibration;;power system simulation
  • 中文刊名:JDQW
  • 英文刊名:Power System Protection and Control
  • 机构:西南交通大学电气工程学院;国网四川省电力公司电力科学研究院;
  • 出版日期:2019-02-19 17:27
  • 出版单位:电力系统保护与控制
  • 年:2019
  • 期:v.47;No.526
  • 基金:四川省重点研发项目资助(2017GZ0054)~~
  • 语种:中文;
  • 页:JDQW201904004
  • 页数:10
  • CN:04
  • ISSN:41-1401/TM
  • 分类号:31-40
摘要
近年来,随着电力系统中无功补偿设备的广泛应用,由无功补偿设备引起的电力系统问题不断涌出,由此引发的次同步振荡问题也日益凸显。首先针对IEEE次同步谐振第一标准系统,推导并且建立了考虑并联补偿高抗的单机无穷大系统的数学模型,进而得到全系统的小信号模型。接着通过特征根分析方法论证了引入并联补偿高抗对于电力系统次同步振荡的影响。最后探讨了不同并联高抗值对于轴系扭振模式的影响,结合PSCAD仿真软件,在10机39节点系统进行仿真验证。结果表明:并联补偿高抗的参与在一定程度上使得系统发生次同步振荡的可能性变大,与此同时补偿高抗值的减小也会增强系统的阻尼。
        In recent years, with the widespread application of reactive power compensation equipment in power system, the issue of sub-synchronous oscillation brought by the reactive compensation equipment has been increasingly emerging. Based on the first IEEE standard system model for sub-synchronous resonance, this paper provides the power system's model with shunt reactors, and the small signal model of the whole system is obtained. In addition, the eigenvalue analysis method is used to demonstrate the influence of shunt reactors on sub-synchronous oscillation in power system. It also discusses the effect of different shunt reactors values on the torsional vibration mode of the shaft system. As a result, the 10-generator 39-bus system of PSCAD simulation software is used to verify that the existence of shunt reactors makes the power system more likely generate sub-synchronous oscillations. Meanwhile, the reduction of shunt reactors value will increase the damping of the system.
引文
[1]谢小荣,王路平,贺静波,等.电力系统次同步谐振/振荡的形态分析[J].电网技术,2017,41(4):1043-1049.XIE Xiaorong,WANG Luping,HE Jingbo,et al.Analysis of subsynchronous resonance/oscillation types in power systems[J].Power System Technology,2017,41(4):1043-1049.
    [2]鹿建成,李啸骢,黄维,等.基于SSSC和励磁协调抑制次同步振荡的线性最优控制器设计[J].电力系统保护与控制,2015,43(1):21-27.LU Jiancheng,LI Xiaocong,HUANG Wei,et al.Linear optimal controller of static series synchronous compensator and excitation to suppress sub-synchronous oscillation[J].Power System Protection and Control,2015,43(1):21-27.
    [3]江振华,程时杰,傅予力,等.含有可控串联补偿电容的电力系统次同步谐振的研究[J].中国电机工程学报,2000,20(6):47-52.JIANG Zhenhua,CHENG Shijie,FU Yuli,et al.Analysis of subsynchronous resonance of power system with TCSC[J].Proceedings of the CSEE,2000,20(6):47-52.
    [4]李海峰,刘崇茹,韩民晓.基于频率扫描法与特征值法的交流系统串补引起的次同步谐振分析[J].电网技术,2012,36(5):107-112.LI Haifeng,LIU Chongru,HAN Minxiao.Analysis on subsynchronous resonance caused by series compensation in AC system based on frequency-scanning and eigenvalue[J].Power System Technology,2012,36(5):107-112.
    [5]李晨,孙海顺,朱鑫要,等.降低次同步谐振风险的大型火电基地经串补线路送出规划和运行方案[J].电网技术,2014,38(1):113-119.LI Chen,SUN Haishun,ZHU Xinyao,et al.Planning and operation schemes for reducing SSR risk of outward power transmission of large-scale thermal generation bases via transmission line with series compensation[J].Power System Technology,2014,38(1):113-119.
    [6]白菲菲,和鹏,张鹏,等.抑制次同步谐振的串补方案仿真研究[J].电力系统保护与控制,2011,39(19):121-125.BAI Feifei,HE Peng,ZHANG Peng,et al.Simulation research on series compensation schemes for damping subsynchronous resonance[J].Power System Protection and Control,2011,39(19):121-125.
    [7]吴楠,李尚盛,查晓明.改进的同步电机阻尼绕组电流观测器[J].电力系统保护与控制,2015,43(1):67-72.WU Nan,LI Shangsheng,ZHA Xiaoming.Improved synchronous generator damper current observer[J].Power System Protection and Control,2015,43(1):67-72.
    [8]刘世宇,谢小荣,王仲鸿.我国火电基地串补输电系统的次同步谐振问题[J].电网技术,2008,32(1):5-8.LIU Shiyu,XIE Xiaorong,WANG Zhonghong.SSRproblem in compensated transmission system of thermal power bases in China[J].Power System Technology,2008,32(1):5-8.
    [9]IEEE Subsynchronous Resonance Task Froce.First benchmark model for computer simulation of subsynchronous resonance[J].IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565-1672.
    [10]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009.
    [11]陈大宇,赵永林,刘全,等.上都电厂轴系次同步扭振保护系统[J].电力系统保护与控制,2010,36(6):122-125.CHEN Dayu,ZHAO Yonglin,LIU Quan,et al.Shafting torsional protection system at Shangdu power plant[J].Power System Protection and Control,2010,36(6):122-125.
    [12]肖湘宁,郭春林,高本峰,等.电力系统次同步振荡及其抑制方法[M].北京:机械工业出版社,2014.
    [13]倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析[M].北京:清华大学出版社,2002.
    [14]胡剑锋,闫济红,陈中,等.电力系统小干扰稳定风险评估与仿真[J].广东电力,2017,30(8):80-86.HU Jianfeng,YAN Jihong,CHEN Zhong,et al.Risk assessment and simulation on small signal stability of power system[J].Guangdong Electric Power,2017,30(8):80-86.
    [15]郑翔.次同步振荡抑制装置及其控制策略研究[D].杭州:浙江大学,2011.ZHENG Xiang.Research on subsynchronous oscillation suppression devices and their control strategies[D].Zhejiang:Zhejiang University,2011.
    [16]肖湘宁,杨琳,张丹,等.基于特征值法的次同步阻尼守恒特性分析[J].电网技术,2011,35(11):80-84.XIAO Xiangning,YANG Lin,ZHANG Dan,et al.Analysis on subsynchronous damping conservation character based on eigenvalue method[J].Power System Technology,2011,35(11):80-84.
    [17]赵兰明,李宽,张友泉,等.基于FastICA-MP算法的次同步振荡模态参数辨识[J].电力系统保护与控制,2018,46(8):37-42.ZHAO Lanming,LI Kuan,ZHANG Youquan,et al.Parameter identification of subsynchronous oscillation based on FastICA-MP algorithm[J].Power System Protection and Control,2018,46(8):37-42.
    [18]林琳,黄保志.某汽轮机轴振监测系统故障分析处理[J].广东电力,2017,30(9):33-36.LIN Lin,HUANG Baozhi.Analysis and treatment for fault of shaft vibration monitoring system of steam turbine[J].Guangdong Electric Power,2017,30(9):33-36.
    [19]刘世宇,谢小荣,张东辉.多模式次同步谐振的产生机理与抑制方法[J].清华大学学报,2008,48(4):457-460.LIU Shiyu,XIE Xiaorong,ZHANG Donghui.Mechanism and mitigation of multi-mode sub-synchronous resonance[J].Journal of Tsinghua University,2008,48(4):457-460.
    [20]刘革明,白杨,任祖怡,等.次同步振荡监测控制系统的研究与实现[J].电力系统保护与控制,2018,46(2):131-136.LIU Geming,BAI Yang,REN Zuyi,et al.Research and implementation on monitoring and controlling system of sub synchronous oscillation[J].Power System Protection and Control,2018,46(2):131-136.
    [21]孙吉波,伍双喜,刘俊磊,等.一起区域外机组引发的低频振荡对广东电网的影响[J].广东电力,2017,30(12):81-85.SUN Jibo,WU Shuangxi,LIU Junlei,et al.Influence of low-frequency oscillation caused by outside area unit on Guangdong power grid[J].Guangdong Electric Power,2017,30(12):81-85.
    [22]徐政.复转矩系数法的适用性分析及其时域仿真实现[J].中国电机工程学报,2000,20(6):1-4.XU Zheng.The complex torque coefficient approach’s applicability analysis and its realization by time domain simulation[J].Proceedings of the CSEE,2000,20(6):1-4.
    [23]陈斐泓,杨健维,廖凯,等.基于频率扫描的双馈风电机组次同步控制相互作用分析[J].电力系统保护与控制,2017,45(24):84-91.CHEN Feihong,YANG Jianwei,LIAO Kai,et al.Subsynchronous control interaction analysis in doubly-fed induction generator based on frequency scanning[J].Power System Protection and Control,2017,45(24):84-91.
    [24]杨琳,肖湘宁.电力系统稳定器相位补偿方式对次同步振荡的影响[J].电力系统保护与控制,2014,42(12):1-7.YANG Lin,XIAO Xiangning.Impact of phase compensation methods of power system stabilizer on subsynchronous oscillation[J].Power System Protection and Control,2014,42(12):1-7.
    [25]刘超,蒋东翔,谢小荣,等.次同步振荡引起的发电机组轴系疲劳损伤[J].电力系统自动化,2010,34(15):19-22.LIU Chao,JIANG Dongxiang,XIE Xiaorong,et al.Fatigue damage of turbine generator shafting caused by subsynchronous oscillation[J].Automation of Electric Power Systems,2010,34(15):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700