用户名: 密码: 验证码:
长江中下游底泥重金属污染特征、潜在生态风险评价及来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pollution characteristics, potential ecological risk assessment and source analysis of heavy metals of sediment in the middle and lower reaches of the Yangtze River
  • 作者:易雨君 ; 王文君 ; 宋劼
  • 英文作者:YI Yujun;WANG Wenjun;SONG Jie;Ministry of Education Key Laboratory of Water and Substrate Science, School of Environment, Beijing Normal University;
  • 关键词:底泥 ; 重金属 ; 潜在生态风险评价 ; 污染源
  • 英文关键词:sediment;;heavy metal;;potential ecological risk assessment;;pollution source
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:北京师范大学水沙科学教育部重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:v.50;No.544
  • 基金:国家重点研发计划(2016YFC0502209);; 国家自然科学基金(51722901,51439001)
  • 语种:中文;
  • 页:SJWJ201902001
  • 页数:7
  • CN:02
  • ISSN:11-1757/TV
  • 分类号:4-10
摘要
为探究长江中下游底泥重金属污染状况,对长江中下游主干河流及湖泊的27个断面的底泥进行采集并测定镉、铅、铬、铜、锌、砷和汞的浓度。运用潜在生态风险指数法对重金属污染进行评价,并采用相关分析和主成分分析对重金属的污染来源进行分析。结果表明:Hg、Cd、Pb、Cr、Cu、Zn和As的含量分别为0.010~0.55 mg/kg、0.016~0.17 mg/kg、13.04~110.03 mg/kg、42.03~121.03 mg/kg、21.70~75.10 mg/kg、48.01~750.01 mg/kg和6.03~82.95 mg/kg。重金属浓度较高的地方位于较为发达的城市(武汉和南京)、采矿业发达的地区(安庆、大通和芜湖)、港口城市(城陵矶)以及湖泊(鄱阳湖和东洞庭湖)。由潜在生态风险评价可知,7种重金属污染程度的大小顺序为:Hg>As> Pb>Cd>Cu>Cr>Zn。相关分析和主成分分析结果表明Pb、Cd、Zn、Cu、Hg和Cr主要来源于煤炭燃烧、农业活动及生活污水,As主要来源于采矿业和航运业。长江中下游及湖泊底泥所有点位的Pb、Cu、Cr、Zn和Cd均处于轻微潜在生态风险状态,As和Hg在部分点位具有较高潜在生态风险。结合所有重金属元素来说,长江中下游以及湖泊底泥的潜在生态风险水平较低。
        Aiming at understanding pollution situation of the middle and lower reaches of the Yangtze River, twenty seven sediment samples are collected from the river and lakes of the middle and lower reaches of the Yangtze River.Contents of Cd, Pb,Cr, Cu,Zn, As and Hg are tested.The pollution of heavy metals is evaluated by potential risk assessment. Correlation analysis(CA) and principle component analysis(PCA) are areapplied to identify the possible pollution sources of the seven heavy metals. The result shows that contents of Hg, Cd, Pb, Cr, Cu, Zn and As are 0.010~0.55 mg·kg~(-1),0.016~0.17 mg·kg~(-1), 13.04~110.03 mg·kg~(-1), 42.03~121.03 mg·kg~(-1), 21.70~75.10 mg·kg~(-1), 45.01~750.01 mg·kg~(-1)and 6.03~82.95 mg·kg~(-1).Contents of heavy metals are higher in developed cities(Wuhan and Nanjing), mining areas(Anqing,Datong and Wuhu),port city(Chenglingji) or lakes(Poyang lake and East Dongting lake).The pollution of the seven heavy metals are ordered by Hg>Cd>As>Cu>Pb>Cr>Zn according to potential risk assessment index. Correlation analysis and principal component analysis shows that the pollution sources of Pb, Cd, Zn, Cu, Hg and Cr mainly originate from coal combustion, agricultural activities and domestic sewage.The pollution sourcse of As are mainly mining and shipping industry.Contents of Cd,Pb, Cu, Cr and Zn all have the possibility of causing lower ecological risk.While As and Hg show high ecological risk possibilities at some sites. Considering all heavy metals, sediment of river and lakes of the middle and lower reaches of the Yangtze River are in lower potential ecological risk.
引文
[1] 许友泽,刘锦军,成应向,等.湘江底泥重金属污染特征与生态风险评价[J].环境化学,2016,35(1):189- 198.
    [2] 王漫漫.太湖流域典型河流重金属风险评估及来源解析[D].南京:南京大学,2016.
    [3] 毛志刚,谷孝鸿,陆小明,等.太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J].环境科学,2014, 35(1):186- 193.
    [4] 徐鹏飞.鄱阳湖-乐安河段湿地水土环境中重金属污染风险及其对水生植物群落的影响[D].南昌:江西师范大学,2013.
    [5] 张彦,卢学强,刘红磊,等.渤海湾天津段表层沉积物重金属分布特征及其来源解析[J].环境科学研究,2014,27(6):608- 614.
    [6] 魏俊峰,吴大清,彭金莲,等.污染沉积物中重金属的释放及其动力学[J].生态环境,2003,12(2): 127- 130.
    [7] 杨振东,聂玉伦,胡春.北运河沉积物/水界面上重金属迁移转化规律[J].环境工程学报,2012,6(10): 3455- 3459.
    [8] 应一梅, 许春红, 李海华,等. 黄河泥沙吸附砷污染物室内静态试验[J].环境科学研究, 2012, 25(3):352- 356.
    [9] 陈豪, 左其亭, 窦明. 河流底泥重金属污染研究进展[J]. 人民黄河, 2014, 36(5):71- 75.
    [10] 孙花.湘江长沙段土壤和底泥重金属污染及其生态风险评价[D].长沙:湖南师范大学, 2012.
    [11] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(108):108- 118.
    [12] TOMLINSON D L, WILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgol?nder Meeresuntersuchungen, 1980, 33(1- 4):566- 575.
    [13] HAKANSON L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14(8):975- 1001.
    [14] 环境保护部.水质65种元素的测定电感耦合等离子体质谱法:HJ 700—2014[S].北京:中国科学出版社,2014.
    [15] 王岚, 王亚平, 许春雪,等. 长江水系表层沉积物重金属污染特征及生态风险性评价[J]. 环境科学, 2012, 33(8):2599- 2606.
    [16] HILTON J, DAVISON W, OCHSENBEIN U. A mathematical model for analysis of sediment core data: Implications for enrichment factor calculations and trace-metal transport mechanisms[J]. Chemical Geology, 1985, 48(1):281- 291.
    [17] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015(3):1037- 1044.
    [18] 李法松,韩铖,林大松,等. 安庆沿江湖泊及长江安庆段沉积物重金属污染特征及生态风险评价[J]. 农业环境科学学报, 2017, 36(3):574- 582.
    [19] 林义生, 宋艳卿. 铜陵市重金属污染研究进展[J]. 科技资讯, 2013(21):137- 139.
    [20] 李鸣, 刘琪璟. 鄱阳湖水体和底泥重金属污染特征与评价[J]. 南昌大学学报(理科版), 2010, 34(5):486- 489.
    [21] YANG Z F, WANG Y, SHEN Z Y, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, 166(2- 3):1186- 1194.
    [22] 苏秋克, 蒋敬业, 马振东. 武汉市湖泊汞污染现状研究[J]. 地质科技情报, 2004, 23(3):83- 88.
    [23] 张光贵,黄博.湖南洞庭湖水系重金属健康风险评价[J].水资源保护,2014,30(1): 14- 17.
    [24] 李崇,李法云,张营,等.沈阳市街道灰尘中重金属的空间分布特征研究[J].生态环境学报,2008,17(2):110- 114.
    [25] 叶属峰.生态长江口评价体系研究及生态建设对策[M].北京:海洋出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700