用户名: 密码: 验证码:
陆相断陷湖盆滑塌型深水重力流沉积特征、识别标志及形成机制——来自海拉尔盆地东明凹陷明D2井全井段连续取心的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sedimentary characteristics,identification mark and formation mechanism of the slumping deepwater gravity flow in fault lacustrine basin:a case study on the consecutive coring well of Ming D2 in Dongming sag,Hailaer Basin
  • 作者:陈广坡 ; 李娟 ; 吴海波 ; 彭威 ; 李敬生 ; 谢明贤 ; 张斌 ; 石小茜
  • 英文作者:Chen Guangpo;Li Juan;Wu Haibo;Peng Wei;Li Jingsheng;Xie Mingxian;Zhang Bin;Shi Xiaoqian;PetroChina Research Institute of Petroleum Exploration & Development-Northwest;Research Institute of Petroleum Exploration & Development,Daqing Oilfield Limited Company;
  • 关键词:陆相断陷湖盆 ; 滑塌型深水重力流 ; 沉积特征 ; 形成机制 ; 海拉尔盆地
  • 英文关键词:fault lacustrine basin;;slumping deepwater gravity flow;;sedimentary characteristics;;formation mechanism;;Hailaer Basin
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:中国石油勘探开发研究院西北分院;大庆油田有限责任公司勘探开发研究院;
  • 出版日期:2018-10-15
  • 出版单位:石油学报
  • 年:2018
  • 期:v.39
  • 基金:中国石油天然气股份有限公司科技重大专项(2016E-0202)资助
  • 语种:中文;
  • 页:SYXB201810004
  • 页数:11
  • CN:10
  • ISSN:11-2128/TE
  • 分类号:43-53
摘要
通过对明D2井连续取心的观察分析,提出海拉尔盆地东明凹陷白垩系南屯组和大磨拐河组普遍发育滑塌型深水重力流沉积,其沉积构造丰富多样,特征明显。以沉积过程为基础,采用以Shanmugam为代表的简化划分方案,将滑塌型深水重力流分为滑动、滑塌、碎屑流和浊流4个过程,并对各过程和阶段的沉积特征进行了描述,总结了其主要识别标志,分析和探讨了其形成机理,认为滑塌型深水重力流的滑动、滑塌和碎屑流3个阶段主要为块体流搬运机制,浊流阶段沉积主要为牛顿流体或紊流机制。滑动阶段沉积以保留部分原始沉积构造(如砂泥互层和沉积旋回)、发育层内小型正断或逆断错断、较大角度的地层倾角为主要识别标志。滑塌阶段沉积以塑性变形为特点,以顶、底面均与暗色泥岩呈突变接触,内部发育大规模的同生软沉积变形构造(如包卷构造)为主要识别特征。碎屑流可以分为砂质碎屑流和泥质碎屑流;碎屑流沉积以宾汉流体为特征,整体冻结式沉积为特点,主要识别标志为砂岩顶、底面均与暗色泥岩突变接触,砂岩呈块状,可发育漂浮砾岩和泥岩撕裂屑等,在砂质碎屑流中还可发育逆粒序层理。以牛顿流体搬运的浊流沉积则以正递变层理为主要识别标志,底部与暗色泥岩呈突变接触,发育完整或不完整的鲍马序列为主要特征。
        Through the observation and analysis of Well Ming D2,it is proposed that the slumping deepwater gravity flow sediments are widely developed with various sedimentary structures and obvious characteristics in Cretaceous Nantun Formation and Damoguaihe Formation in Dongming sag,Hailaer Basin.Based on sedimentary process,the simplified classification scheme represented by Shanmugam is used to divide the slumping deepwater gravity flow into four processes,i.e.,sliding,slumping,debris flow and turbidity current.Meanwhile,this paper describes the sedimentary characteristics in each stage of the process,summarizes the main identification marks,analyzes and discusses the formation mechanism.It is considered that the three stages of sliding,slumping and debris flow of the slumping deepwater gravity flow are dominated by the mass flow transport mechanism,and the sedimentation in the stage of turbidity current is mainly controlled by Newtonian fluid or turbulent flow mechanism.In the sliding stage,the partial reservation of primary sedimentary structure characteristics,such as sand-mud interbed and sedimentary cycle,is mainly identified by the development of small normal fault or reverse fault in internal layers,and large stratigraphic dip.The sediment in the slumping stage is mainly characterized and identified by plastic deformation with the top and bottom abruptly contacted with dark mudstone,as well as the large-scale internally-developed syndepositional soft-sediment deformation structures,such as convolute structure.The debris flow can be classified into sandy and muddy debris flows.The debris flow sediment is mainly marked by the Bingham fluid andoverall frozen sediment with the top and bottom of sandstone abruptly contacted with dark mudstone,massive sandstone as well as the favorable conditions for developing floating gravel and mudstone tearing clastics.In addition,the reverse graded bedding can be developed in the sandy debris flow.The turbidity sediment transported by Newtonian fluid is mainly indicated by normal grading bedding,the bottom abruptly contacted with dark mudstone,and the development of complete or incomplete Bouma sequence.
引文
[1] KUENEN P H,MIGLIORINI C I.Turbidity currents as a cause of graded bedding[J].Journal of Geology,1950,58(2):91-127.
    [2] BOUMA A H,KUENEN P H,SHEPARD F P.Sedimentology of some flysch deposits[M].Amsterdam,New York:Elsevier Pub.Co.,1962:168.
    [3] DOTT R H JR.Dynamics of subaqueous gravity depositional processes[J].AAPG Bulletin,1963,47(1):104-128.
    [4] MIDDLETON G V,HAMPTON M A.Sediment-gravity flows:mechanics of flow and deposition[M]∥MIDDLETON G V,BOUMA A H.Turbidites and Deep Water Sedimentation.Los Angeles:Society of Economic Paleontologists and Mineralogists,1973:1-38.
    [5] MIDDLETON G V,HAMPTON M A.Subaqueous sediment transport and deposition by sediment gravity flows[M]∥STANLEY D J,SWIFT D J P.Marine Sediment Transport and Environmental Management.New York:Wiley,1976:197-218.
    [6] HAMPTON M A.Competence of fine-grained debris flows[J].Journal of Sedimentary Research,1975,45(4):834-844.
    [7] LOWE D R.Sediment gravity flows:their classification and some problems of application to natural flows and deposits[M]∥DOYLE L J,PILKEY O H.Geology of continental slopes.Tulsa:Society of Economic Paleontologists and Mineralogists,1979(27):75-82.
    [8] LOWE D R.Sediment-gravity flows:II Depositional models with special reference to the deposits of high-density turbidity currents[J].Journal of Sedimentary Petrology,1982,52(1):279-297.
    [9] SHANMUGAM G,MOIOLA R J.Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita mountains,Arkansas and Oklahoma[J].AAPG Bulletin,1995,79(5):672-695.
    [10] SHANMUGAM G.50 years of the turbidite paradigm(1950s-1999s):deep-water processes and facies models-a critical perspective[J].Marine and Petroleum Geology,2000,17(2):285-342.
    [11] SHANMUGAM G.深水砂体成因研究新进展[J].石油勘探与开发,2013,40(3):294-301.SHANMUGAM G.New perspectives on deep-water sandstones:implications[J].Petroleum Exploration&Development,2013,40(3):294-301.
    [12]杨田,操应长,王艳忠,等.深水重力流类型、沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例[J].石油学报,2015,36(9):1048-1059.YANG Tian,CAO Yingchang,WANG Yanzhong,et al.Types,sedimentary characteristics and genetic mechanisms of deepwater gravity flows:a case study of the middle submember in Member 3 of Shahejie Formation in Jiyang depression[J].Acta Petrolei Sinica,2015,36(9):1048-1059.
    [13]袁静,梁绘媛,梁兵,等.湖相重力流沉积特征及发育模式——以苏北盆地高邮凹陷深凹带戴南组为例[J].石油学报,2016,37(3):348-359.YUAN Jing,LIANG Huiyuan,LIANG Bing,et al.Sedimentary characteristics and development model of lacustrine gravity flow:a case study of Dainan Formation in deep sag belt of Gaoyou depression,Northern Jiangsu Basin[J].Acta Petrolei Sinica,2016,37(3):348-359.
    [14]操应长,杨田,王艳忠,等.超临界沉积物重力流形成演化及特征[J]石油学报,2017,38(6):607-621.CAO Yingchang,YANG Tian,WANG Yanzhong,et al.Formation,evolution and sedimentary characteristics of supercritical sediment gravity-flow[J].Acta Petrolei Sinica,2017,38(6):607-621.
    [15]夏景生,刘晓涵,王政军,等.渤海湾盆地南堡凹陷西部东营组三段—沙河街组一段砂质碎屑流沉积特征及油气勘探意义[J].石油学报,2017,38(4):399-413.XIA Jingsheng,Liu Xiaohan,Wang Zhengjun,et al.Sedimentary characteristics of sandy debris flow in the 3rd Member of Dongying Formation and the 1st Member of Shahejie Formation of the western Nanpu sag,Bohai Bay Basin and its significance in hydrocarbon exploration[J].Acta Petrolei Sinica,2017,38(4):399-413.
    [16]鲜本忠,万锦峰,姜在兴,等.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J].地学前缘,2012,19(1):121-135.XIAN Benzhong,WAN Jinfeng,JIANG Zaixing,et al.Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin:a case study from Dongying Formation in Nanpu depression[J].Earth Science Frontiers,2012,19(1):121-135.
    [17]邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1065-1075.ZOU Caineng,ZHAO Zhengzhang,YANG Hua,et al.Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J].Acta Sedimentologica Sinica,2009,27(6):1065-1075.
    [18]郑荣才,文华国,韩永林,等.鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义[J].成都理工大学学报:自然科学版,2006,33(6):566-575.ZHENG Rongcai,WEN Huaguo,HAN Yonglin,et al.Discovery and significance of sublacustrine slump turbidite fans in Chang 6oil-bearing formation of Baibao region in Ordos Basin,China[J].Journal of Chengdu University of Technology:Science&Technology Edition,2006,33(6):566-575.
    [19]赵澄林,朱筱敏.沉积岩石学[M].第三版.北京:石油工业出版社,2001:311-325.ZHAO Chenglin,ZHU Xiaomin.Sedimentary petrology[M].3rd ed.Beijing:Petroleum Industry Press,2001:311-325.
    [20]陈俊飞,张昌民,朱锐,等.软沉积物滑塌变形物理模拟及变形机理分析[J].古地理学报,2017,19(1):139-146.CHEN Junfei,ZHANG Changmin,ZHU Rui,et al.Physical simulation and mechanism analysis of soft-sediment slump deformation[J].Journal of Palaeogeography,2017,19(1):139-146.
    [21]王德坪.湖相内成碎屑流的沉积及形成机理[J].地质学报,1991,65(4):299-316.WANG Deping.The sedimentation and formation mechanism of lacustrine endogenic debris flow[J].Acta Geologica Sinica,1991,65(4):299-316.
    [22]黄银涛,文力,姚光庆,等.莺歌海盆地东方区黄流组细粒厚层重力流砂体沉积特征[J].石油学报,2018,39(3):290-303.HUANG Yintao,WEN Li,YAO Guangqing,et al.Sedimentary characteristics of thick fine-grained shallow-marine gravity flow deposits from Huangliu Formation in Dongfang area,Yinggehai Basin,China[J].Acta Petrolei Sinica,2018,39(3):290-303.
    [23]操应长,王思佳,王艳忠,等.滑塌型深水重力流沉积特征及沉积模式:以渤海湾盆地临南洼陷古近系沙三中亚段为例[J].古地理学报,2017,19(3):419-432.CAO Yingchang,WANG Sijia,WANG Yanzhong,et al.Sedimentary characteristics and depositional model of slumping deep-water gravity flow deposits:a case study from the middle Member 3of Paleogene Shahejie Formation in Linnan subsag,Bohai Bay Basin[J].Journal of Palaeogeography,2017,19(3):419-432.
    [24]操应长,张青青,王艳忠,等.东营凹陷沙三中亚段三角洲前缘滑塌型重力流岩相类型及其分布特征[J].沉积与特提斯地质,2017,37(1):9-17.CAO Yingchang,ZHANG Qingqing,WANG Yanzhong,et al.Delta front gravity flow deposits in the middle submember of the third Member of the Shahejie Formation in the Dongying depression:lithofacies and lithofacies association types and their distribution[J].Sedimentary Geology and Tethyan Geology,2017,37(1):9-17.
    [25]李相博,刘化清,张忠义,等.深水块状砂岩碎屑流成因的直接证据:“泥包砾”结构——以鄂尔多斯盆地上三叠统延长组研究为例[J].沉积学报,2014,32(4):611-622.LI Xiangbo,LIU Huaqing,ZHANG Zhongyi,et al.“Argillaceous parcel”structure:a direct evidence of debris flow origin of deepwater massive sandstone of Yanchang Formation,Upper Triassic,the Ordos Basin[J].Acta Sedimentologica Sinica,2014,32(4):611-622.
    [26]郝明辉,许强,杨兴国,等.高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J].岩石力学与工程学报,2015,34(3):472-479.HAO Minghui,XU Qiang,YANG Xingguo,et al.Physical modeling tests on inverse grading of particles in high speed landslide debris[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):472-479.
    [27]陈广坡,王天奇,李林波,等.箕状断陷湖盆湖底扇特征及油气勘探——以二连盆地赛汉塔拉凹陷腾格尔组二段为例[J].石油勘探与开发,2010,37(1):63-69.CHEN Guangpo,WANG Tianqi,LI Linbo,et al.Characteristics of sublacustrine fan in half-graben rift lake basin and its petroleum prospecting:case from the second Member of Tenggeer Formation Saihantala sag in Erlian Basin[J].Petroleum Exploration and Development,2010,37(1):63-69.
    [28]张昌民,朱锐,赵康,等.走向多极:碎屑沉积学研究的十对热点问题[J].东北石油大学学报,2017,41(4):1-11.ZHANG Changmin,ZHU Rui,ZHAO Kang,et al.Ten couples of hot spots in clastic sedimentological research[J].Journal of Northeast Petroleum University,2017,41(4):1-11.
    [29]张光亚,马锋,梁英波,等.全球深层油气勘探领域及理论技术进展[J].石油学报,2015,36(9):1156-1166.ZHANG Guangya,MA Feng,LIANG Yingbo,et al.Domain and theory-technology progress of global deep oil&gas exploration[J].Acta Petrolei Sinaca,2015,36(9):1156-1166.
    [30]黄银涛,姚光庆,朱红涛,等.莺歌海盆地东方区黄流组重力流砂体的底流改造作用[J].石油学报,2016,37(7):855-866.HUANG Yintao,YAO Guangqing,ZHU Hongtao,et al.Reworking of gravity flow sandbody by bottom-current from Huangliu Formation in Dongfang area of Yinggehai Basin,northwestern South China Sea[J].Acta Petrolei Sinica,2016,37(7):855-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700