用户名: 密码: 验证码:
离子渗氮和固溶复合处理制备深层含氮奥氏体不锈钢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation for Deep Nitriding Austenitic Stainless Steel by Complex Treatment of Plasma Nitriding and Solid Solution
  • 作者:卢世静 ; 孙斐 ; 缪小吉 ; 胡静
  • 英文作者:LU Shi-jing;SUN Fei;MIAO Xiao-ji;HU Jing;Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University;Department of Mechanical Engineering, Changzhou Institute of Light Industry Technology;
  • 关键词:离子渗氮 ; 固溶处理 ; XRD ; 深层含氮奥氏体不锈钢 ; 耐磨性 ; 耐蚀性
  • 英文关键词:plasma nitriding;;solution treatment;;XRD;;deep nitriding austenitic stainless steel;;wear resistance;;corrosion resistance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:常州大学江苏省材料表面科学与技术重点实验室;常州轻工职业技术学院机械工程系;
  • 出版日期:2018-10-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:国家自然科学基金项目(51774052);; 江苏高校优势学科建设工程项目(BA2016078)~~
  • 语种:中文;
  • 页:BMJS201810025
  • 页数:6
  • CN:10
  • ISSN:50-1083/TG
  • 分类号:191-196
摘要
目的通过离子渗氮和固溶复合处理制备深层含氮奥氏体不锈钢,获得硬度、耐蚀性和耐磨性等综合性能优良的奥氏体不锈钢。方法将304奥氏体不锈钢试样放在LD-8CL型直流等离子体渗氮炉内,在400 Pa下进行560℃、4h的离子渗氮处理,渗氮后进行1050℃、8h的固溶处理。使用HXD-1000TMC型显微硬度计、DMI-3000M型金相显微镜、D/max-2500型X射线衍射仪(XRD)、Thermo250XI型X射线光电子能谱仪(XPS)、CS350电化学测量系统和万能摩擦磨损试验机,对经过复合处理的304不锈钢的截面硬化梯度、截面组织、物相、表面成分、耐蚀性和耐磨性进行研究分析,验证此复合处理对获得硬度高、耐蚀性和耐磨性好等综合性能优良的奥氏体不锈钢的适用性。结果经过复合处理,不锈钢表面的氮原子数分数为1.56%,且为单一奥氏体相?N。?N所对应的衍射峰相对于不锈钢基体向左偏移,有效硬化层深达1.0 mm,不锈钢的表面硬度从基体的210HV0.025提高到308HV0.025。不但提高了深层含氮奥氏体不锈钢的耐磨性,而且提高了不锈钢的耐蚀性,腐蚀电位从基体的-0.534 V提高到-0.422 V,摩擦系数由基体的0.8降到0.7。结论离子渗氮和固溶复合处理适用于制备综合性能优良的深层含氮奥氏体不锈钢。工艺设计时,可以根据材料服役要求,选择合适的固溶工艺,从而获得满足不同综合性能要求的含氮不锈钢。
        The work aims to prepare deep nitriding austenitic stainless steel by a complex treatment of plasma nitriding and solid solution and then obtain the austenitic stainless steel with excellent comprehensive performance of hardness, corrosion re-sistance and wear resistance. 304 austenitic stainless steel was put in a LD-8 CL D.C. plasma nitriding furnace and plasma nitriding treatment was conducted at 560 ℃ for 4 h in 400 Pa. Then, solid solution was carried out at 1050 ℃ for 8 h. In order to verify the applicability to get excellent comprehensive performance for stainless steel by this complex treatment, cross-sectional hardness profile, microstructure, phase constituents, surface composition, corrosion resistance and wear resistance of 304 stainless steel after the complex treatment were investigated and analyzed by HXD-1000 TMC microhardness tester, DMI-3000 M metallographic microscope, D/max-2500 X-ray diffraction(XRD), Thermo250 XI X-ray photoelectron spectroscopy(XPS), CS 350 electrochemical workstation and universal friction tester. The stainless steel through complex treatment had single expanded austenite phase(γN) and the nitrogen atomic concentration was 1.56%. The corresponding peaks of γN shifted to the left to the stainless steel substrate. The effective hardening layer was 1.0 mm, and the surface hardness of the stainless steel increased from 210 HV0.025 to 308 HV0.025. Meanwhile, the complex treatment could improve the wear resistance and corrosion resistance of deep nitriding austenitic stainless steel. The corrosion potential increased from-0.534 V to-0.422 V and the friction coefficient of the nitrogenous steel decreased from 0.8 to 0.7. Complex treatment of plasma nitriding and solid solution can be used to prepare the deep nitriding stainless steel with excellent comprehensive performance. During technology design, appropriate solid solution parameters can be selected to prepare the nitriding stainless steel in conformity with various comprehensive performances based on the technical requirements of the components.
引文
[1]张文华.不锈钢及其热处理[M].沈阳:辽宁科学技术出版社, 2010.ZHANG Wen-hua. Stainless steel and heat treatment[M].Shenyang:Liaoning Science and Technology Press, 2010.
    [2]WANGJ,XIONGJ,PENGQ,etal.EffectsofDC plasmanitridingparametersonmicrostructureandpropertiesof304Lstainlesssteel[J].Materialscharacterization, 2009, 60(3):197-203.
    [3]鲁显京,向志东.45#钢Cr-N包埋共渗涂层的组织特征及形成机理[J].表面技术, 2017, 46(1):218-223.LUXian-jing,XIANGZhi-dong.Microstructurecharacteristics and formation mechanism of Co-deposition coating on plain 45#carbon steel via simultaneous chromising andnitridingbypackcementationprocess[J].Surface technology, 2017, 46(1):218-223.
    [4]LIJC,YANGXM,WANGSK,etal.ArapidD.C.Plasmanitridingtechnologycatalyzedbypre-oxidation forAISI4140steel[J].Materialsletters,2014,116(2):199-202.
    [5]谢涛,林海,许杰,等.不同材质油套管钢的CO2腐蚀行为[J].表面技术, 2017(1):211-217.XIE Tao, LIN Hai, XU Jie, et al. CO2 corrosion behavior ofoilcasingsteelmadefromdifferentmaterials[J].Surface technology, 2017(1):211-217.
    [6]PAN T J, CHEN Y, ZHANG B, et al. Corrosion behavior ofniobiumcoated304stainlesssteelinacidsolution[J].Applied surface science, 2016, 369:320-325.
    [7]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院金属研究所, 2008.WANG Song-tao. Mechanical behaviors and mechanisms ofnitrogeneffectofhighnitrogenausteniticstainless steels[D]. Shenyang:Institute of Metal Research, Chinese Academy of Sciences, 2008.
    [8]王正国.高氮奥氏体不锈钢显微组织及力学性能的研究[D].太原:太原理工大学, 2011.WANGZheng-guo.Study onthemicrostructure andmechanicalpropertyinhighnitrogenausteniticstainless steel[D].Taiyuan:TaiyuanUniversityofTechnology,2011.
    [9]周灿栋,蒋国昌,朱钰如,等.粉末锻造制备含氮奥氏体不锈钢[J].粉末冶金技术, 2004, 22(1):41-44.ZHOU Can-dong, JIANG Guo-chang, ZHU Jue-ru, et al.Productionofnitrogenousausteniticstainlesssteelby powderforging[J].Powdermetallurgytechnology,2004,22(1):41-44.
    [10]赵品,付瑞东,郑炀曾,等.双相不锈钢15Cr-7.5Mn-2.6Mo的固溶渗氮工艺研究[J].材料热处理学报, 2003,24(3):74-78.ZHAOPin,FURui-dong,ZHENGYang-zeng,etal.Studyofsolidsolutionnitridingtechnologyof15Cr-7.5Mn-2.6Mo duplex stainless steel[J]. Transactions of materials and heat treatment, 2003, 24(3):74-78.
    [11]ABEDI H R, SALEHI M, YAZDKHASTI M, et al. Effect ofhightemperaturepost-oxidizingontribologicaland corrosion behavior of plasma nitrided AISI 316 austenitic stainless steel[J]. Vacuum, 2010, 85:443-447.
    [12]AKITA M, UEMATSU Y, KAKIUCHI T, et al. Effect of sensitizationoncorrosionfatiguebehavioroftype304stainlesssteelannealedinnitrogengas[J].Materialsscience and engineering A, 2015, 640:31-40.
    [13]孙斐,胡佳佳,王树凯,等.气压对304奥氏体不锈钢低温离子渗氮组织与性能影响及机理研究[J].材料热处理学报, 2014, 35(S2):221-225.SUN Fei, HU Jia-jia, WANG Shu-kai, et al. Effect of gas pressureinlowtemperatureplasmanitridingonthemicrostructureandpropertiesfor304austeniticstainless steel[J].Transactionsofmaterialsandheattreatment,2014, 35(S2):221-225.
    [14]SHEN L, WANG L, WANG Y, et al. Plasma nitriding of AISI304austeniticstainlesssteelwithpre-shotpeening[J].Surfaceandcoatingstechnology,2010,204(20):3222-3227.
    [15]李丽,孙峰,张尧成.固溶处理对激光熔覆Stellite6合金涂层性能的影响[J].表面技术, 2017(1):78-81.LI Li, SUN Feng, ZHANG Yao-cheng. Effect of solution treatment on the performance of laser cladding of stellite6alloy coating[J]. Surface technology, 2017(1):78-81.
    [16]金维松.含氮奥氏体不锈钢耐局部腐蚀性能的研究[D].昆明:昆明理工大学, 2007.JINWei-song.Studyonthelocalcorrosionresistanceof nitrogencontainingausteniticstainlesssteel[D].Kunming:KunmingUniversityofScienceandTechnology,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700