用户名: 密码: 验证码:
船用泡沫铝夹层板在低温下的冲击动态响应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic behavior of aluminum foam sandwich plates for lightweight ship at low temperature
  • 作者:郭开岭 ; 朱凌 ; 李应刚 ; 余同希 ; 周青文
  • 英文作者:GUO Kai-ling;ZHU Ling;LI Ying-gang;YU Tong-xi;ZHOU Qing-wen;Key Laboratory of High Performance Ship Technology of Ministry of Education, School of Transportation, Wuhan University of Technology;Collaboration Innovation Centre for Advanced Ship and DeepSea Exploration (CISSE);Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay;
  • 关键词:船用泡沫铝夹层板 ; 低温 ; 抗冲击性能 ; 数值仿真 ; 实验
  • 英文关键词:aluminum foam sandwich plate for ship;;low temperature;;impact resistance;;numerical simulation;;experiment
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:高性能舰船技术教育部重点实验室(武汉理工大学);先进船舶与深海装备研发协同创新中心;香港科技大学力学与航空工程系;
  • 出版日期:2019-05-15
  • 出版单位:船舶力学
  • 年:2019
  • 期:v.23;No.187
  • 基金:国家自然科学基金(5157911,11602182);; 中央高校基本科研业务费资助(2016YB015;2017IVB009)
  • 语种:中文;
  • 页:CBLX201905011
  • 页数:11
  • CN:05
  • ISSN:32-1468/U
  • 分类号:89-99
摘要
泡沫铝夹层板具有良好的动态能量吸收性能,在极地船舶抗冲击防护方面具有巨大的潜在应用前景。文章利用ABAQUS有限元软件,结合准静态拉伸压缩材料试验,建立了船用泡沫铝夹层板的低温动态冲击数值仿真模型,研究了其动态冲击响应与抗冲击性能,并采用Instran 9350落锤冲击试验机对数值仿真模型进行了试验验证。在此基础上,研究了低温和冲击能量对船用泡沫铝夹层板动态冲击响应的影响。结果表明,随着冲击能量的增加,常温和低温条件下船用夹层板的冲击力峰值、最大挠度和最终挠度遵从乘幂增长规律。与常温相比,低温下船用泡沫铝夹层板的面板变形较小,且随着冲击能量的增加,低温的影响更为显著,即船用泡沫铝夹层板在低温下具有更好的抗冲击性能。
        Aluminum foam sandwich plate(AFSP) has excellent energy absorption capability, thus it has potential application in the protective structures for polar ship. In this paper, the nonlinear finite element software ABAQUS is used to analyze the dynamic behavior of aluminum foam sandwich plate for lightweight ship at low temperature and room temperature. The accuracy of numerical method was verified by the comparisons of results between the experiment and the numerical simulation. Besides, a series of simulations is carried out to investigate the dynamic responses of AFSP when suffered from impact loadings under different impact energies at low temperature and room temperature. The results indicate that the peak impact force,max deflection and permanent deflection increase as the impact energy increases, following power law. The deflections at low temperature are smaller than those at room temperature, meanwhile, the effect of low temperature on the dynamic responses of AFSP increases with the increase of impact energy. It can be concluded that the impact resistance of AFSP at low temperature is better than that at room temperature.
引文
[1]Yan J B,Liew J Y R,Zhang M H,et al.Mechanical properties of normal strength mild steel and high strength steel S690in low temperature relevant to Arctic environment[J].Materials&Design,2014,61:150-159.
    [2]Ehlers S,諂stby E.Increased crashworthiness due to arctic conditions-The influence of sub-zero temperature[J].Marine Structures,2012,28(1):86-100.
    [3]Tian X M,Zou Z J,Yu J,Wang F.Review on advances in research of ice loads on ice-going ships[J].Journal of Ship Mechanics,2015,19(3):337-348.
    [4]Wang W J,Zou Z J.Numerical simulation of ship icebreaking in level ice based on nonlinear finite element method[J].Journal of Ship Mechanics,2016,20(12):1584-1594.
    [5]Crupi V,Epasto G,Guglielmino E.Comparison of aluminium sandwiches for lightweight ship structures:Honeycomb vs.foam[J].Marine Structures,2013,30:74-96.
    [6]刘坤,包杰,王自,唐文勇.船用夹层板系统水下防护性能数值仿真分析[J].船舶力学,2015,19(8):982-993.Liu K,Bao J,Wang Z,Tang W Y.Numerical simulation analysis on protective performance of sandwich plate system[J].Journal of Ship Mechanics,2015,19(8):982-993.(in Chinese)
    [7]田媛,刘钧,汪浩,程远胜.砰击载荷下轻质波纹夹芯夹层板动力响应特性分析[J].船舶力学,2016,20(10):1300-1308.Tian Y,Liu J,Wang H,Cheng Y S.Dynamic response of light weight corrugated-core sandwich plates subjected to slamming impact[J].Journal of Ship Mechanics,2016,20(10):1300-1308.(in Chinese)
    [8]Deshpande V S,Fleck N A.High strain rate compressive behaviour of aluminium alloy foams[J].International Journal of Impact Engineering,2000,24(3):277-298.
    [9]Zhao H,Elnasri I,Girard Y.Perforation of aluminium foam core sandwich panels under impact loading-An experimental study[J].International Journal of Impact Engineering,2007,34(7):1246-1257.
    [10]Hou W,Zhu F,Lu G,et al.Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J].International Journal of Impact Engineering,2010,37(10):1045-1055.
    [11]Zhu L,Guo K,Li Y,et al.Impact resistance of aluminium foam sandwich plate under low temperature[C].The 2nd International Conference in Sports Science&Technology,2016.
    [12]Zhu L,Guo K,Li Y,et al.Dynamic responses of aluminum foam sandwich plates in the repeated impact at low temperature[C].The 27th International Ocean and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2017.
    [13]Qin Q,Wang T J.Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect[J].Composite Structures,2013,96:346-356.
    [14]赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报,2008,40(2):194-206.Zhao G P,Lu T J.Dynamic responses of cellular metallic sandwich plates under impact loading[J].Chinses Journal of Theoretical and Applied Mechanics,2008,40(2):194-206.(in Chinese)
    [15]Yang F,Niu W,Jing L,et al.Experimental and numerical studies of the anti-penetration performance of sandwich panels with aluminum foam cores[J].Acta Mechanica Solida Sinica,2015,28(6):735-746.
    [16]Li Z,Zheng Z,Yu J,et al.Effect of temperature on the indentation behavior of closed-cell aluminum foam[J].Materials Science and Engineering:A,2012,550:222-226.
    [17]ABAQUS User’s manual 6.14[K].
    [18]Deshpande V S,Fleck N A.Isotropic constitutive models for metallic foams[J].Journal of the Mechanics and Physics of Solids,2000,48(6):1253-1283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700