用户名: 密码: 验证码:
磁悬浮轨道交通关键技术及全速度域应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Key Technologies and Whole Speed Range Application of Maglev Rail Transport
  • 作者:徐飞 ; 罗世辉 ; 邓自刚
  • 英文作者:XU Fei;LUO Shihui;DENG Zigang;National Laboratory for Rail Transportation(Preparatory)of Southwest Jiaotong University;
  • 关键词:轨道交通 ; 磁悬浮列车 ; 全速度域 ; 关键技术
  • 英文关键词:rail transport;;maglev train;;whole speed range;;key technology
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:西南交通大学轨道交通国家实验室(筹);
  • 出版日期:2019-03-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.257
  • 基金:国家重点研发计划(2017YFB1401400)
  • 语种:中文;
  • 页:TDXB201903007
  • 页数:10
  • CN:03
  • ISSN:11-2104/U
  • 分类号:46-55
摘要
首先从磁悬浮列车的角度提出全速度域的概念并将其划分为5个等级,简要分析了社会发展与地面交通速度的关系,认为今后采用磁悬浮轨道交通方式填补高速铁路与航空客运间的速度空白是发展的趋势。随后,通过与传统轮轨列车对比的方式,进一步从黏着与非黏着运行,车载与非车载动力,轮轨集中载荷和悬浮分布载荷等方面,分别研究了采用3种不同原理的高速磁悬浮轨道交通的基本特点、关键技术。研究认为,电磁悬浮方式与高温超导悬浮方式的轨道交通具有在全速度域均可运用的潜力,前者的技术关键是有效抑制车轨耦合振动,后者的技术关键是进一步提升承载能力,目前将电动悬浮用于高速域没有重大的技术障碍,但由于磁阻力很大,不适用于中速及以下速度域。
        This paper proposed the concept of Whole Speed Range(WSR) and classified it into five levels from the view point of maglev trains. A brief analysis of the relationship between social development and ground transport speed was also conducted. The analysis indicates that, in the future, using maglev rail transport to fill the speed gap between high-speed railways and passenger airliners has become a development trend. This paper then further studied the basic characteristics and key technologies of high-speed maglev rail transit with three different principles by comparing conventional wheel-rail trains from multiple perspectives, i.e., adhesive operation and non-adhesive operation, on-board and off-board motive power, wheel-rail concentrated force bearing and maglev distributed force bearing. The results show that rail transport approaches that use electromagnetic levitation method and high temperature superconducting levitation method both have potential in WSR applications. The key technology for the former is to effectively suppress coupled vehicle-guideway vibrations whilst that for the latter is to further increase the loading capacity. Currently, there is no major technical hurdle for electrical dynamic levitation for high speed applications. But given its significant great magnetic resistance, it is not suitable for medium or lower speed applications.
引文
[1] 吴祥明,常文森,刘万明.上海高速磁浮列车及磁浮技术发展刍议[J].综合运输,2005(1):28-31.WU Xiangming,CHANG Wensen,LIU Wangming. Shanghai MAGLEV Train and Discussion of Technology Development[J]. Chinese Journal of Comprehensive Transportation,2005(1):28-31.
    [2] SAWADA K,MURAI M,TANAKA M. Magnetic Levitation (MAGLEV) Technologies[J]. Japan Railway and Transport Review,2000(25):58-67.
    [3] SAWADA K. Outlook of Maglev Chuo Shinkansen[C]//Maglev 2014. Brazil :Rio de Janeiro,2014.
    [4] WANG J,WANG S,ZENG Y,et al. The First Man-loading High Temperature Superconducting Maglev Test Vehicle in the World[J]. Physica C:Super Conductivity and Its Applications,2002,378(1):809-814.
    [5] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005,40(2):133-137.SHEN Zhiyun. On Developing High-speed Evacuated Tube Transportation in China[J].Chinese Journal of Southwest Jiaotong University,2005,40(2):133-137.
    [6] A Super Chute[J]. IEEE Spectrum,2014,51(7):20-21.
    [7] ELON M. Hyperloop Alpha [EB/OL]. (2013-08-13)[2018-11-25].http://www.spacex.com/sites/spacex/files/hyperloop_alpha.pdf,2013.
    [8] Virgin Hyperloop One. New Chairman, New Funding, & New Speed Records [EB/OL]. (2017-12-18)[2018-11-25].https://hyperloop-one.com/blog/new-chairman-new-funding-new-speed-records.
    [9] THORNTON R D,CLARK T,PERREAULT B. Linear Synchronous Motor Propulsion of Small Transit Vehicles[C]//Proceeding of 2004 JRC:2004 ASME/IEEE Joint Rail Conference. USA:Baltimore,2004.
    [10] 黄中荣,罗世辉. 基于M3车辆悬浮架结构方案的曲线通过能力研究[J]. 电力机车与城轨车辆,2012(4):1-5.HUANG Zhongrong, LUO Shihui. Research on the Curve Negotiating Capacity Based on M3 Vehicle Suspension Bogie Structure Scheme[J]. Electric Locomotives & Mass Transit Vehicles,2012(4):1-5.
    [11] KLUEHSPIES J. The Maglev Option[C]//Maglev 2014.Brazil :Rio de Janeiro,2014.
    [12] 中国新闻网. 中国时速600 km磁浮交通系统技术方案通过评审[EB/OL].(2018-01-25)[2018-11-25].http://www.xinhuanet.com/politics/2018-01/25/c_1122317277.htm.
    [13] 唐松柏,黄问盈. 我国高速列车速度分级[J]. 中国铁道科学,2006,27(2):77-82.TANG Songbai,HUANG Wenying. Speed Classification of High Speed Train in China[J]. China Railway Science,2006, 27(2):77-82.
    [14] NAKAMURA S. Development of High Speed Surface Transport System (HSST)[J]. IEEE Transactions on Magnetics, 1979, 15(6):1428-1433.
    [15] 何邦模. 高速铁路的速度目标值[J]. 世界轨道交通,2003(1):19-22.HE Bangmo. Speed Target Value of the High Speed Railway[J]. World Railway,2003(1):19-22.
    [16] 钱清泉,丁荣军,刘友梅,等. 高速磁浮交通技术及产业发展战略研究报告[R]. 北京:中国工程院,2017.
    [17] 徐飞. 中国高铁的全球战略价值[J]. 学术前沿,2016(2):6-20.XU Fei. The Global Strategic Value of China’s High-speed Rail[J]. Frontiers,2016(2):6-20.
    [18] 沈志云. 高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报,2001,1(1):1-6.SHEN Zhiyun. Dynamic Interaction of High Speed Maglev Train on Girders and Its Comparison with the Case in Ordinary High Speed Railways[J]. Journal of Traffic and Transportation Engineering,2001,1(1):1-6.
    [19] 赖纳?沙赫,彼得·耶勒,勒内·瑙曼. 高速磁浮与高速轮轨交通系统比较[M]. 莫凡,许晶,翁秀玲,译.北京:中国科学技术出版社,2008.
    [20] 吴祥明.磁浮列车[M]. 上海:上海科学技术出版社,2003:4-13.
    [21] British Stanandards Institution. BS EN50119 Railway Applications-Fixed Installations-Electric Traction Overhead Contact Lines[S]. UK:British Standards Institution,2011.
    [22] COATES K C. Shanghai’s MAGLEV Project — Levitating Beyond Transportation Theory[J]. Engineering World,2005,15(2):26-33.
    [23] KORTUEM M. Vehicle Response on Flexible Track[C]// International Conference on Maglev Transport Now and For the Future. UK: Solihull:47-58.
    [24] 马卫华,李苗,罗世辉. 一种中低速磁浮车辆悬浮架CN106864304A[P].2017-06-20.
    [25] 刘耀宗,向湘林,邓文熙,等. 一种无构架式牵引直线电机中置的悬浮架及磁悬浮列车CN105904995A[P].2016-08-31.
    [26] HAN H S,YIM B H,LEE N J,et al. Effects of the Guideway's Vibrational Characteristics on the Dynamics of a Maglev Vehicle[J]. Vehicle System Dynamics,2009,47(3):309-324.
    [27] KIM K J,HAN J B,HAN H S,et al. Coupled Vibration Analysis of Maglev Vehicle Guideway while Standing Still or Moving at Low Speeds[J]. Vehicle System Dynamics,2015,53(4):587-601.
    [28] 李金辉. EMS型磁悬浮列车—桥梁耦合振动控制技术研究[D]. 长沙:国防科技大学,2015.
    [29] 黎松奇. EMS磁浮列车悬浮系统振动机理及抑制方法研究[D]. 成都:西南交通大学,2016.
    [30] 汪科任,罗世辉,张继业. 磁悬浮控制器设计及静悬浮稳定性分析[J]. 西南交通大学学报,2017,52(1):118-126.WANG Keren,LUO Shihui,ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Chinese Journal of Southwest Jiaotong University,2017,52(1):118-126.
    [31] ZHANG M, LUO S, GAO C, et al. Research on the Mechanism of a Newly Developed Levitation Frame with Mid-set Air Spring[J].Vehicle System Dynamics, 2018, 56(12):1797-1816.
    [32] 梁鑫,罗世辉,马卫华. 基于相似原理的磁浮车桥耦合振动研究[J]. 铁道科学与工程学报,2014,11(3):31-36.LIANG Xin,LUO Shihui,MA Weihua. Study on Coupling Vibration of Maglev Vehicle-bridge Based on the Similarity Theory[J]. Journal of Railway Science and Engineering, 2014, 11(3):31-36.
    [33] OHSAKI H. Japanese Superconducting Maglev-Development and Commercial Service Plan[C]//Maglev 2014.Brazil :Rio de Janeiro,2014.
    [34] GOODALL R M,WILLIAMS R A. Dynamic Criteria in the Design of Maglev Suspension Systems[C]// International Conference on Maglev Transport Now and for the Future.UK: Solihull,1984:77-86.
    [35] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展,2017,36(5):329-334.DENG Zigang,LI Haitao. Recent Development of High-Temperature Superconducting Maglev[J]. Materials China,2017,36(5):329-334.
    [36] WERFEL F N,Floegegl-delor U,ROTHFELD R,et al. Superconductor Bearings,Flywheels and Transportation[J]. Superconductor Science and Technology,2012,25(1): 014007.
    [37] MA K B,POSTREKHIN Y V,CHU W K. Superconductor and Magnet Levitation Devices[J]. Review of Scientific Instruments,2003,74(12):4989-5017.
    [38] SOTELO G G,DE OLIVEIRA R A H,COSTA F S, et al. A Full Scale Superconducting Magnetic Levitation (MagLev) Vehicle Operational Line[J]. IEEE Transactions on Applied Superconductivity,2015,259(3):3601005.
    [39] SCHULTZ L,HAAS De O,VERGES P, et al. Superconductively Levitated Transport System-the SupraTrans Project[J]. IEEE Transactions on Applied Superconductivity,2005,15(2):2301-2305.
    [40] DENG Z,ZHANG W,ZHENG J,et al. A High-temperature Superconducting Maglev-evacuated Tube Transport (HTS Maglev-ETT) Test System[J]. IEEE Transactions on Applied Superconductivity,2017,27(6): 3602008.
    [41] ZHENG J,DENG Z,WANG L, et al. Stability of the Maglev Vehicle Model Using Bulk High Tc Superconductors at Low Velocity[J]. IEEE Transactions on Applied Superconductivity,2007,17(2):2103-2106.
    [42] HSU Y,KETCHEN D,HOLLAND L,et al. Status of the Magnetic Levitation Upgrade to Holloman High Speed Test Track[C]// Maglev 2008. USA: San Diego,2008.
    [43] MATTOS L S,RODRIGUEZ E,COSTA F,et al. MagLev-cobra Operational Tests[J]. IEEE Tansactions on Applied Superconductivity,2016,26(3):3600704.
    [44] 李强北. 国外磁浮列车述评(上)[J]. 国外铁道车辆,1996,33(4):1-8.LI Qiangbei. Review on the Foreign Maglev Trains(1/2)[J]. Chinese Journal of Foreign Rolling Stock, 1996,33(4):1-8.
    [45] 李强北. 国外磁浮列车述评(下)[J]. 国外铁道车辆,1996,33(5):7-13.LI Qiangbei. Review on the Foreign Maglev Trains(2/2)[J]. Chinese Journal of Foreign Rolling Stock,1996,33(5):7-13.
    [46] 邓自刚. 运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究[D].成都:西南交通大学, 2009.
    [47] 张莉,姚津津,田峰,等. 民航业落实”一带一路"战略的思考[J].宏观经济管理,2016(5):62-65.ZHANG Li, YAO Jinjin, TIAN Feng,et.al. Consideration on“The Belt and Road” Practice in Civil Aviation[J]. Macroeconomic Management, 2016(5):62-65.
    [48] XU Fei. The Belt and Road —— the Global Strategic of China High-speed Railway[M]. Shanghai: Truth & Wisdom Press, 2018:16-17.
    [49] KINSTLINGER J. Magnetic Levitation along the Eastern Seaboard Reduction in Air Travel and Greenhouse Gases[C]//Maglev 2008. USA:San Diego,2008.
    [50] 刘本林,赵勇. 速车系统概论[M]//真空管道交通工程技术丛书.成都:西南交通大学出版社,2009.
    [51] 杨文将,温正,丘明,等. 航天发射超导磁浮平台设计的初步实验研究[J]. 低温物理学报,2005,27(5):1040-1044.YANG Wenjiang,WEN Zheng,QIU Min,et al. Primary Experimental Study of Superconducting Maglev Test Vehicle Design for Space Launch[J]. Chinese Journal of Low Temperature Physics,2005,27(5):1040-1044.
    [52] WANG J,WANG S,DENG C, et al. Laboratory-scale High Temperature Superconducting Maglev Launch System[J]. IEEE Tansactions on Applied Superconductivity, 2007, 17(2): 2091-2094.
    [53] 徐飞. 中国建设交通强国的综合基础与战略意义[J]. 学术前沿,2018(11):70-79.XU Fei. The Foundation and Strategic Significance of Building a Great Transportation for China[J]. Frontiers,2018(11):70-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700