用户名: 密码: 验证码:
牦牛乳清粉的功能特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional Properties of Yak Whey Powder
  • 作者:高瑞平 ; 梁琪 ; 白莉莉 ; 石永祺
  • 英文作者:GAO Ruiping;LIANG Qi;BAI Lili;SHI Yongqi;Functional Dairy Product Engineering Laboratory of Gansu Province, College of Food Science and Engineering,Gansu Agricultural University;
  • 关键词:牦牛原乳清粉 ; 牦牛甜乳清粉 ; 乳清蛋白 ; 主要成分 ; 功能特性
  • 英文关键词:native yak whey powder;;sweet yak whey powder;;whey protein;;main components;;functional properties
  • 中文刊名:RYKJ
  • 英文刊名:Journal of Dairy Science and Technology
  • 机构:甘肃农业大学食品科学与工程学院甘肃省功能乳品工程实验室;
  • 出版日期:2019-05-01
  • 出版单位:乳业科学与技术
  • 年:2019
  • 期:v.42;No.197
  • 基金:国家自然科学基金地区科学基金项目(31660468)
  • 语种:中文;
  • 页:RYKJ201903005
  • 页数:7
  • CN:03
  • ISSN:31-1881/S
  • 分类号:8+24-29
摘要
为掌握牦牛乳清粉的组成特性和功能性质,分别利用酸沉淀得到的牦牛乳清液制取牦牛原乳清粉(native yak whey powder,NYW),利用加工牦牛乳干酪排出(即酶凝法)的乳清废液制取牦牛甜乳清粉(sweet yak whey powder,SYW),测定NYW和SYW的总蛋白质、乳糖、灰分含量和pH值等指标以及溶解性、持水性、持油性、起泡性、乳化性和热稳定性等功能性质。结果表明:SYW和NYW的总蛋白质含量有显著差异(P<0.05),差值为3.433%,乳糖含量差异不显著(P>0.05),NYW的灰分含量高达11.188%,较SYW高3.156%,有显著差异(P<0.05),NYW和SYW溶液均呈酸性,pH值分别为4.837和5.410,差异显著(P<0.05);NYW(27.079%)和SYW(34.207%)的溶解性差异显著(P<0.05);NYW的持水率显著高于SYW,但持油率显著低于SYW(P<0.05);SYW的起泡能力、泡沫稳定性、乳化活性和乳化稳定性均显著高于NYW(P<0.05);NYW和SYW在60℃热处理时开始有沉淀产生,75℃以后沉淀量显著增加(P<0.05),85℃时沉淀率达最大值,说明牦牛乳清粉85℃时最不稳定,而市售荷斯坦乳清粉(Holstein whey powder,HW)在80℃最不稳定,牦牛乳清粉热稳定性优于HW。研究结果表明,酸沉淀和酶凝法获得的乳清粉主要成分和功能特性不同。
        To provide insights into the chemical composition and functional properties of yak whey powder, in this experiment, native yak whey powder(NYW) from the supernatant of acid precipitated yak milk and sweet yak whey powder(SYW) from waste cheese whey(resulting from enzymatic milk coagulation) for measurement of their total protein, lactose and ash contents, pH values and functional properties such as solubility, water-holding capacity, oil-holding property, foaming capacity, emulsifying capacity and thermal stability. The results showed that the difference between the total protein contents of SYW and NYW was 3.433% which was significant(P < 0.05) while the difference in lactose content was not significant(P > 0.05). The ash content of NYW was 11.188%, which was 3.156% higher than that of SYW, with a significant difference being found between them(P < 0.05). The pH values of NYW and SYW solutions were 4.837 and 5.410, respectively, with the difference being significant(P < 0.05). The difference in solubility was significant(P < 0.05), 34.207% for SYW versus27.079% for NYW. The water-holding capacity of NYW was significantly higher than that of SYW, but the oil-holding capacity was significantly lower than that of SYW(P < 0.05). The foaming ability, foam stability, emulsifying activity and emulsion stability of SYW were significantly higher than those of NYW(P < 0.05). When NYW and SYW were heat treated at 60 ℃, precipitation began to occur. When the temperature exceeded 75 ℃, the amount of precipitation increased significantly(P < 0.05), and the maximum value occurred at 85 ℃, indicating yak whey powder to be the least stable at 85 ℃.On the other hand, yak whey powder was more thermos-stable commercial Holstein whey powder(HW), the most unstable at 80 ℃. The findings from this study show that the main components and functional properties of the yak whey powders obtained by acid precipitation and enzymatic coagulation are different.
引文
[1]MOLLEAI C,MARMO L,BOSCO F.Food industry[M].Rijeka:InTech,2013:549-588.DOI:10.5772/53159.
    [2]NISHANTHI M,VASILJEVIC T,CHANDRAPALA J.Properties of whey proteins obtained from different whey streams[J].International Dairy Journal,2016,66:76-83.DOI:10.1016/j.idairyj.2016.1 1.009.
    [3]ZEMEL M B.Role of calcium and dairy products in energy partitioning and weight management[J].American Journal of Clinical Nutrition,2004,79(5):907-912.DOI:10.1079/PHN2003555.
    [4]WARNAM A H,SUTHERLAND J P.Dairy protein products:milk and milk products[M].New York:Springer,1994:159-182.
    [5]LI Haimei,MA Ying,LI Qiming,et al.The chemical composition and nitrogen distribution of Chinese yak(Maiwa)milk[J].International Journal of Molecular Sciences,2011,12(8):4885-4895.DOI:10.3390/ijms12084885.
    [6]张容昶,段李成,陈宇知,等.天祝白牦牛乳的主要成分测定[J].中国牦牛,1986(2):23-26.
    [7]KOCA N,ERBAY Z,KAYMAK-ERTEKIN F,et al.Effects of spraydrying conditions on the chemical,physical,and sensory properties of cheese powder[J].Journal of Dairy Science,2015,98(5):2934-2943.DOI:10.3168/jds.2014-9111.
    [8]BANAVARA D S,ANUPAMA D,RANKIN S A.Studies on physicochemical and functional properties of commercial sweet whey powders[J].Journal of Dairy Science,2003,86(2):3866-3875.DOI:10.316 8/j ds.S0022-0302(03)73994-0.
    [9]PLALTNIK D,PORCELA V O,GONZALEZA U,et al.Recovery of caprinewhey protein and its application in a food protein formulation[J].Food Science and Technology,2015,63(1):331-338.DOI:10.1016/j.lwt.2015.03.027.
    [10]PEARCE K N,KINSELLA J E.Emulsifying properties of proteins:evaluation of a turbidimetric technique[J].Journal of Agricultural and Food Chemistry,1978,26(3):716-723.DOI:10.1021/jf60217a041.
    [11]MOTOI H,FUKFDOME S,URABE I.Continuous production of wheat gluten peptide with foaming properties using immobilized enzymes[J].European Food Research and Technology,2004,219(5):522-528.DOI:10.1007/s00217-004-0986-2.
    [12]LUO X,VASILJEVIC T,RAMCHANDRAN L.Effect of adjusted pH prior to ultrafiltration of skim milk on membrane performance and physical functionality of milk protein concentrate[J].Journal of Dairy Science,2016,99(2):1083-1094.DOI:10.3168/jds.2015-9842.
    [13]MENG G T,MA C Y.Thermal properties of Phaseolus angularis(red bean)globulin[J].Food Chemistry,2001,73(4):453-460.DOI:10.1016/S0308-8146(00)00329-0.
    [14]ALSAED A K,AHMAD R,ALDOOMY H,et al.Characterization,concentration and utilization of sweet and acid whey[J].Pakistan Journal of Nutrition,2013,12(2):172-177.
    [15]CHANDRAPALA J,DUKE M C,GRAY S R,et al.Properties of acid whey as a function of pH and temperature[J].Journal of Dairy Science,2016,98(7):4352-4363.DOI:10.3168/jds.2015-9435.
    [16]HALLING P J.Protein-stabilized foams and emulsions[J].Critical Reviews in Food Science and Nutrition,198 1,15(2):155-203.DOI:10.1080/10408398109527315.
    [17]CHEISON S,LAI M,LEEB E,et al.Hydrolysis ofβ-lactoglobulin by trypsin under acidic pH and analysis of the hydrolysates withMALDI-TOF-MS/MS[J].Food Chemistry,2011,125(4):1241-1248.DOI:10.1016/j.foodchem.2010.10.042.
    [18]杨楠,梁琪,杨敏,等.不同加热温度对牦牛乳酪蛋白的影响[J].食品科学,2013,34(19):14-48.DOI:10.7506/spkx1002-6630-201319004.
    [19]PETERSA J P C M,VERGELDEB F,VAN AS H,et al.Unravelling of the water-binding capacity of cold-gelated whey protein microparticles[J].Food Hydrocolloids,2017,63:533-544.DOI:10.1016/j.foodhyd.2016.09.038.
    [20]MARTINEZ-PADILLA L P,GARCIA-MENA V,CASASALENCASTER N B,et al.Foaming properties of skim milk powder fortified with milk proteins[J].International Dairy Journal,2014,36(1):21-28.DOI:10.1016/j.idairyj.2013.11.011.
    [21]KAMATH S,WEBB R E,DEETH H C.The composition of interfacial material from skim milk foams[J].Journal of Dairy Science,2011,94(6):2707-2718.DOI:10.3168/j ds.2010-3839.
    [22]WALSTRA P.Casein sub-micelles:do they exist?[J].International Dairy Journal,1999,9(3/6):189-192.DOI:10.1016/S0958-6946(99)00059-X.
    [23]YE Aiqian.Functional properties of milk protein concentrates:emulsifying properties,adsorption and stability of emulsions[J].International Dairy Journal,2011,21(1):14-20.DOI:10.1016/j.idairyj.2010.07.005.
    [24]屈雪寅,郑楠,李松励,等.热处理对液态乳中乳清蛋白的影响研究进展[J].食品科学,2017,38(9):307-313.DOI:10.7506/spkx1002-6630-201709047.
    [25]CORREDIG M,DALGLEISH D G.The mechanisms of the heatinduced interaction of whey proteins with casein micelles in milk effect of protein concentration at pH 6.75 and 8.05[J].International Dairy Journal,1999,19(3):233-236.DOI:10.1016/S0958-6946(99)00066-7.
    [26]LALEYE L C,JOBE B,WASESA A A.Comparative study on heat stability and functionality of camel and bovine milk whey proteins[J].Journal of Dairy Science,2008,91(12):4527-4534.DOI:10.3168/jds.2008-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700