用户名: 密码: 验证码:
采场全生命周期及其应力的时空演化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic evolution characteristic on stope pressure in whole life cycle of stope
  • 作者:郑建伟 ; 鞠文君 ; 赵曦 ; 吴建星 ; 任硕 ; 赵朋朋 ; 王帅
  • 英文作者:ZHENG Jianwei;JU Wenjun;ZHAO Xi;WU Jianxing;REN Shuo;ZHAO Pengpeng;WANG Shuai;Beijing Mining Research Institute,China Coal Research Institute;Coal Mining & Designing Department,Tiandi Science &Technology Co.,Ltd.;Jinneng Group Changzhi Co.,Ltd.;Xi'an Research Institute Co.Ltd.,China Coal Technology & Engineering Group;State Key Laboratory of Coal Mine Safety Technology,CCTEG Shenyang Research Institute;
  • 关键词:采场全生命周期 ; 超前支承应力 ; 工作面顶板应力 ; 覆岩结构 ; 力学分析
  • 英文关键词:advanced abutment pressure;;roof pressure;;the whole life cycle of stope;;structure model;;mechanical analysis
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:煤炭科学研究总院开采研究分院;天地科技股份有限公司开采设计事业部;晋能集团长治有限公司;中煤科工集团西安研究院有限公司;中煤科工集团沈阳研究院有限公司煤矿安全技术国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.295
  • 基金:国家重点研发计划资助项目(2017YFC0804205);; 国家自然科学基金青年基金资助项目(51804159);; 中国煤炭科工集团有限公司科技创新创业资金-青年资助项目(2018-2-QN012)
  • 语种:中文;
  • 页:MTXB201904003
  • 页数:8
  • CN:04
  • ISSN:11-2190/TD
  • 分类号:27-34
摘要
井工开采过程中采场应力的分布及演化规律对于回采巷道及工作面围岩的稳定性控制至关重要。本文将开切眼到停采的全部过程称之为采场全生命周期,且将采场应力分为工作面超前支承应力和工作面顶板应力两部分,基于材料力学建立了采场全生命周期内覆岩结构模型得到了不同阶段超前支承应力的力学函数;借助UDEC软件来分析采动过程中覆岩结构的时空演化过程和超前支承应力的动态演化特征,得到了工作面超前支承应力和工作面顶板应力的协调非同步演化特征,认为单个周期来压内超前支承应力峰值会在空间和时间上超前于工作面顶板应力峰值出现,且二者均表现出周期来压前大于来压后的规律,在采场全生命周期内在采动达到非充分采动和充分采动交界点阶段先后达到极值,因此依据采场应力的演变规律将采场全生命周期分为发生期(Ⅰ)、发育期(Ⅱ)、稳定期(Ⅲ)3个阶段:发生期(Ⅰ)对应的是开切眼至基本顶初次来压,采场应力保持稳定的缓慢增长;发育期(Ⅱ)对应的是周期来压至非充分采动与充分采动阶段的交界点,采场应力保持不同的增长速率;稳定期(Ⅲ)对应的是充分采动直到停采阶段,采场应力保持着较为稳定的波动;通过对采场全生命周期及其应力的演化特征分析及划区可以预先对回采过程中的高位应力区进行判定,及早采取相应的措施,为采场的安全提供保障。
        The distribution and evolution characteristic of the stope pressure is a key factor to controlling sur-rounding rock in underground coal mining. The whole life cycle of stope is referred to the entire process from first cut to the termination of mining operation in this paper. The stope pressure consists of two parts including the advanced abutment pressure and mining face roof pressure. Aiming to analyze the dynamic evolution characteristic of the stope roof pressure,UDEC simulation analysis and different surrounding rock mechanical models of over-lying strata at corresponding multi-time-space conditions were applied. It is demonstrated in this study that the maximum advanced abutment pressure occurs earlier under time dimension and spatial dimension,as compared with the mining face roof pressure during a single periodic weighting process. When the mining face has advanced to the critical extraction point, the advanced abutment pressure and mining face roof pressure reach their extreme value successively. Thus, the whole life cycle of stope can be divided into three stages, which are initial stage(Ⅰ),growing stage(Ⅱ) and stable stage(Ⅲ). The initial stage( I) corresponds to the period from first cut to first weighting,in which the stope stress increases softly.The growing stage( Ⅱ) is from the periodic weighting to the critical extraction point between non-fully mining disturbance and fully mining disturbance. From critical extraction to the finish line is defined as stable stage( Ⅲ). During stage II,the stope stress increases faster than that in stage Ⅰ, and during the last stage Ⅲ, the stope stress changes stably. According to the dynamic evolution of stope pressure featured in life cycle of stope,it could be used to predict the high stressed zone,and the reinforcement support or pressure-relief methods could be applied and adjusted in advance, which can provide a safer mining environment.
引文
[1] WANG Guofa, PANG Yihui. Surrounding rock control theory and longwall mining technology innovation[J]. International Journal of Coal Science&Technology 2017,4(4):301-309.
    [2] KANG Hongpu. Support technologies for deep and complex roadways in underground coal mines:A review[J]. International Journal of Coal Science&Technology 2014,1(3):261-277.
    [3]钱鸣高,缪协兴.采场上覆岩结构的形成与受力分析[J].岩石力学与工程学报,1995,14(2):97-106.QIAN Mingggo, MIAO Xiexing. Mechanical analysis and formation of overburden structure in stope[J]. Chinese Journal of Rock Mechanics and Engineering,1995,14(2):97-106.
    [4]黄庆享.采场基本顶初次来压的结构分析[J].岩石力学与工程学报,1998,17(5):521-526.HUANG Qingxiang. Structural analysis of main roof stability during first weighting in longwall face[J]. Chinese Journal of Rock Mechanics and Engineering, 1998,17(5):521-526.
    [5]姜福兴,马其华.深部长壁工作面动态支承压力极值点的求解[J].煤炭学报,2002,27(3):273-275.JIANG Fuxing, MA Qihua. Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face[J]. Journal of China Coal Society,2002,27(3):273-275.
    [6]潘岳,顾士坦,戚云松.周期来压前受超前隆起分布荷载作用的坚硬顶板弯矩和挠度的解析解[J].岩石力学与工程学报,2012,31(10):2503-2512.PAN Yue, GU Shitan, QI Yunsong. Analytic solution of tight roofs bending moment and deflection under swelling distributive support-ing[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):2503-2512.
    [7]宋振骐,卢国志,夏洪春.一种计算釆场支承压力分布的新算法[J].山东科技大学学报(自然科学版),2006,25(1):1-4.SONG Zhenqi, LU Guozhi, XIA Hongchun. A new algorithm for calculating the distribution of face abutment pressure[J]. Journal of Shandong University of Science and Technology(Natural Science),2006,25(1):1-4.
    [8]史红,姜福兴.充分釆动阶段覆岩多层空间结构支承压力研究[J].煤炭学报,2009,34(5):605-609.SHI Hong, JIANG Fuxing. The dynamic pressure rule of overlying strata spatial structures at the phases sub-critical mining[J]. Journal of China Coal Society,2009,34(5):605-609.
    [9]李洪,代进.支承压力的弹性基础梁解算初探[J].矿山压力与顶板管理,2005,22(2):4-6.LI Hong, DAI Jing. Numerical simulation method for stope underground pressure in whole process of longwall mining[J]. Mine Pressure and Roof Control,2005,22(2):4-6.
    [10]宋振骐,刘义学,陈孟伯,等.岩梁裂断前后的支承压力显现及其应用的探讨[J].山东矿业学院学报,1984,1:27-39.SONG Zhenqi,LIU Yixue,CHENG Mengbo,et al. Abutment pressure behavior before and after strata failure and its application[J].Journal of Shandong University of Mining and Technology, 1984,1:27-39.
    [11] ZHENG Jianwei,JU Wenjun,FU Yukai,et al. Dynamic evolution characteristic of abutment pressure in mining face under multi-time-space conditions[A]. 10th Asian Rock Mechanics Symposium[C]. Singapore:2018.
    [12] XUE Junhua,WANG Hanpeng,ZHOU Wei,et al. Experimental research on overlying strata movement and fracture evolution in pillarless stress-relief mining[J]. International Journal of Coal Science&Technology,2015,2(1):38-45.
    [13]来兴平,单鹏飞,郑建伟,等.浅埋大采高综采矿压显现规律物理模拟实验研究[J].采矿与安全工程学报,2014,31(3):418-423.LAI Xingping,SHAN Pengfei,ZHENG Jianwei,et al. Physical simulation on strata behavior of large mining height fully mechanized face in shallow-buried and thick seam[J]. Journal of Mining&Safety Engineering,2014,31(3):418-423.
    [14]马庆云,钟道昌.采场支承压力分布及发展规律的研究[J].煤,1996,5(1):12-15,58.MA Qingyun,ZHONG Daokui. Distribution and evolution law of abutment pressure in stope[J]. Coal,1996,5(1):12-15,58.
    [15]高明中,冯震海.论采场前方支承压力的形成及应用[J].淮南工业学院学报,2000,20(2):5-8.GAO Mingzhong,FENG Zhenhai. Formation and application of the front abutment pressure on longwall face[J]. Journal of Huainan Institute of Technology,2000,20(2):5-8.
    [16]夏彬伟,龚涛,于斌,等.长壁开采全过程采场矿压数值模拟方法[J].煤炭学报,2017,42(9):2235-2244.XIA Binwei,GONG Tao,YU Bin,et al. Numerical simulation method for stope underground pressure in whole process of longwall mining[J]. Journal of China Coal Society,2017,42(9):2235-2244.
    [17]浦海,缪协兴.综放采场覆岩冒落与围岩支承压力动态分布规律的数值模拟[J].岩石力学与工程学报,2004,23(7):1122-1126.PU Hai,MIAO Xiexing. Numerical simulation of dynamic falling of overlying rocks and abutment pressure in surrounding rocks for fully-mechanized top-coal caving stop[J] Chinese Journal of Rock Mechanics and Engineering,2004,23(7):1122-1126.
    [18]双海清.缓倾斜煤层采动卸压瓦斯储运优势通道演化机理及应用[D].西安:西安科技大学,2017:61-74.SHUANG Haiqing. Advantageous channel evolution mechanism and application of pressure relief gas storage and transportation in gently inclined coal seam[D]. Xi'an:Xi'an University of Science and Technology,2017:61-74.
    [19]司荣军,王春秋,谭云亮.采场支承压力分布规律的数值模拟研究[J].岩土力学,2007,28(2):351-355.SI Rongjun,WANG Chunqiu,TAN Yunliang. Numerical simulation of abutment pressure distribution laws of working faces[J]. Rock and Soil Mechanics,2007,28(2):351-355.
    [20] WANG Jinhua,YU Bin,KANG Hongpu,et al. Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams[J]. International Journal of Coal Science&Technology,2015,2(2):97-161.
    [21]张李节,侯忠杰.浅埋工作面超前支承压力分布规律[J].矿山压力与顶板管理,1994,11(3):23-25.ZHANG Lijie,HOU Zhongjie. Lead abutment pressure behavior of shallow working face[J]. Mine Pressure and Roof Control, 1994,11(3):23-25.
    [22]刘先贵.支承压力高峰位置的现场确定方法[J].西安矿业学院学报,1991,22(2):8-11.LIU Xiangui. Method of determining the position of peak abutment in field[J]. Journal of Xi'an Ming Institute, 1991,22(2):8-11.
    [23]蔡美峰,何满潮,刘东燕.岩石力学与工程(第二版)[M].北京:科学出版社,2015.
    [24]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].北京:中国矿业大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700