用户名: 密码: 验证码:
促进电活性微生物产电呼吸能力的方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in approaches for promoting electricigenic respiration of electroactive microorganisms
  • 作者:方彦伦 ; 陈姗姗
  • 英文作者:Yanlun Fang;Shanshan Chen;Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University;
  • 关键词:活性微生物 ; 产电呼吸 ; 生物电化学系统 ; 电子传递途径 ; 生物基因改造
  • 英文关键词:electroactive microorganism;;electricigenic respiration;;bioelectrochemical system;;electron transport pathway;;genetic modification
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:福建农林大学资源与环境学院福建省土壤环境健康与调控重点实验室;
  • 出版日期:2018-05-28 17:07
  • 出版单位:微生物学报
  • 年:2018
  • 期:v.58;No.340
  • 基金:国家自然科学基金(41501248)~~
  • 语种:中文;
  • 页:WSXB201808005
  • 页数:11
  • CN:08
  • ISSN:11-1995/Q
  • 分类号:37-47
摘要
产电呼吸是指电活性微生物(electroactive microorganisms,EAMs)以胞外固体电极作为电子受体的一种呼吸形式,在可再生能源利用和环境修复方面具有广阔的应用前景。能否进一步提高EAMs的产电呼吸能力是相关技术能否从实验室走向实际应用的核心,而提高产电呼吸能力的关键是加强EAMs与胞外固体电极间的电子传递能力。目前总结如何促进EAMs产电呼吸能力的综述文献极少。因此,本文从投加化学试剂、施加物理作用及改造生物基因3个方面总结了现有的促进EAMs产电呼吸能力的方法,介绍了每种方法的优势与缺陷,重点阐述了每种手段的作用机理及促进效果,并从实际应用和机理研究的角度展望了今后的研究方向。
        Microbial electricigenic respiration is a microbial metabolism mode in which electroactive microorganisms(EAMs) degrade organics and then transfer the produced electrons to extracellular solid electrodes through the respiratory chain, while EAMs gain energy to support their own growth. Microbial electricigenic respiration has broad application prospects in renewable energy utilization and environmental remediation. How to improve the microbial electricigenic respiration performances of EAMs is at the heart of promotion of relevant techniques from lab-scale research to full-scale application, and the electron transfer between EAMs and extracellular solid electrodes plays a pivotal role in microbial electricigenic respiration. To date, there have been many reviews focusing on how to improve electrode materials, however, very few literatures summarize how to strengthen the electricigenic respiration capability of EAMs. In this review, we summarized the existing approaches for promoting the respiratory performances of EAMs from the following three aspects: the addition of chemical reagents for example surfactants and signal molecules, physical force application such as ultrasonic waves and magnetic field forces, and genetic modification for instance phenazine secretion-related gene overexpression and pil A gene heterogenous expression. Advantages and disadvantages of each method were introduced, mechanisms and effects were expatiated upon, and future research directions from the perspectives of the practical application and the mechanism research were proposed.
引文
[1]Lovley DR.Bug juice:harvesting electricity with microorganisms.Nature Reviews Microbiology,2006,4(7):497-508.
    [2]Harnisch F,Schr?der U.From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems.Chemical Society Reviews,2010,39(11):4433-4448.
    [3]Lovley DR.Electromicrobiology.Annual Review of Microbiology,2012,66(1):391-409.
    [4]Krieg T,Sydow A,Schr?der U,Schrader J,Holtmann D.Reactor concepts for bioelectrochemical syntheses and energy conversion.Trends in Biotechnology,2014,32(12):645-655.
    [5]Xie X,Criddle C,Cui Y.Design and fabrication of bioelectrodes for microbial bioelectrochemical systems.Energy&Environmental Science,2015,8(12):3418-3441.
    [6]Liu J,Qiao Y,Lu ZS,Song H,Li C.Enhance electron transfer and performance of microbial fuel cells by perforating the cell membrane.Electrochemistry Communications,2012,15(1):50-53.
    [7]Wen Q,Kong FY,Ma F,Ren YM,Pan ZC.Improved performance of air-cathode microbial fuel cell through additional Tween 80.Journal of Power Sources,2011,196(3):899-904.
    [8]Zheng T,Xu YS,Yong XY,Li B,Yin D,Cheng WW,Yuan HR,Yong YC.Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells.Bioresource Technology,2015,197:416-421.
    [9]Shen HB,Yong XY,Chen YL,Liao ZH,Si RW,Zhou J,Wang SY,Yong YC,Ouyang PK,Zheng T.Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells.Bioresource Technology,2014,167:490-494.
    [10]Wen Q,Kong FY,Ren YM,Cao DX,Wang GL,Zheng HT.Improved performance of microbial fuel cell through addition of rhamnolipid.Electrochemistry Communications,2010,12(12):1710-1713.
    [11]Patil SA,Górecki K,H?gerh?ll C,Gorton L.Cisplatin-induced elongation of Shewanella oneidensis MR-1cells improves microbe-electrode interactions for use in microbial fuel cells.Energy&Environmental Science,2013,6(9):2626-2630.
    [12]Xu YS,Zheng T,Yong XY,Zhai DD,Si RW,Li B,Yu YY,Yong YC.Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.Bioresource Technology,2016,211:542-547.
    [13]Yong YC,Wu XY,Sun JZ,Cao YX,Song H.Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest:a review.Chemosphere,2015,140:18-25.
    [14]Cai WW,Zhang JZ,Ren G,Shen QX,Hou YN,Ma AZ,Deng Y,Wang AJ,Liu WZ.Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells.Applied Energy,2016,183:1133-1141.
    [15]Chen SS,Jing XY,Tang JH,Fang YL,Zhou SG.Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms.Biosensors and Bioelectronics,2017,97:369-376.
    [16]Li XM,Liu L,Liu TX,Yuan T,Zhang W,Li FB,Zhou SG,Li YT.Electron transfer capacity dependence of quinone-mediated Fe(III)reduction and current generation by Klebsiella pneumoniae L17.Chemosphere,2013,92(2):218-224.
    [17]Park D,Zeikus J.Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens.Applied Microbiology and Biotechnology,2002,59(1):58-61.
    [18]Park DH,Zeikus JG.Electricity generation in microbial fuel cells using neutral red as an electronophore.Applied and Environmental Microbiology,2000,66(4):1292-1297.
    [19]Wu YD,Liu TX,Li XM,Li FB.Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200:Electrochemical parameters and thermodynamics.Environmental Science&Technology,2014,48(16):9306-9314.
    [20]Velasquez-Orta SB,Head IM,Curtis TP,Scott K,Lloyd JR,Canstein HV.The effect of flavin electron shuttles in microbial fuel cells current production.Applied Microbiology and Biotechnology,2010,85(5):1373-1381.
    [21]Zhao WR,Hu S,Huang J,Mei LH.Improve microorganism cell permeability for whole-cell bioprocess:methods and strategies.China Biotechnology,2014,34(3):125-131.(in Chinese)赵伟睿,胡升,黄俊,梅乐和.微生物细胞通透性改善方法与策略.中国生物工程杂志,2014,34(3):125-131.
    [22]Islam MA,Woon CW,Ethiraj B,Cheng CK,Yousuf A,Maksudur M,Khan R.Ultrasound driven biofilm removal for stable power generation in microbial fuel cell.Energy&Fuels,2016,31(1):968-976.
    [23]More TT,Ghangrekar MM.Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge.Bioresource Technology,2010,101(2):562-567.
    [24]Katz E,Lioubashevski O,Willner I.Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:enhanced performance of biofuel cells.Journal of the American Chemical Society,2005,127(11):3979-3988.
    [25]Li WW,Sheng GP,Liu XW,Cai PJ,Sun M,Xiao X,Wang YK,Tong ZH,Dong F,Yu HQ.Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells.Biosensors and Bioelectronics,2011,26(10):3987-3992.
    [26]Kong GN,Xu MY,Yang YG.Direct contact-dependent microbial extracellular electron transfer.Acta Microbiologica Sinica,2017,57(5):643-650.(in Chinese)孔冠楠,许玫英,杨永刚.基于直接接触的微生物胞外电子传递.微生物学报,2017,57(5):643-650.
    [27]Liu T,Yu YY,Deng XP,Ng CK,Cao B,Wang JY,Rice SA,Kjelleberg S,Song H.Enhanced Shewanella biofilm promotes bioelectricity generation.Biotechnology and Bioengineering,2015,112(10):2051-2059.
    [28]Hengge R.Principles of c-di-GMP signalling in bacteria.Nature Reviews Microbiology,2009,7(4):263-273
    [29]Koch C,Harnisch F.Is there a specific ecological niche for electroactive microorganisms?Chem Electro Chem,2016,3(9):1282-1295.
    [30]Jensen HM,Albers AE,Malley KR,Londer YY,Cohen BE,Helms BA,Weigele P,Groves JT,Ajo-Franklin CM.Engineering of a synthetic electron conduit in living cells.Proceedings of the National Academy of Sciences of the United States of America,2010,107(45):19213-19218.
    [31]Reguera G,Mc Carthy KD,Mehta T,Nicol JS,Tuominen MT,Lovley s DR.Extracellular electron transfer via microbial nanowires.Nature,2005,435(7045):1098-1101.
    [32]Reguera G,Nevin KP,Nicoll JS,Covalla SF,Woodard TL,Lovley DR.Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.Applied and Environmental Microbiology,2006,72(11):7345-7348.
    [33]Tan Y,Adhikari RY,Malvankar NS,Pi S,Ward JE,Woodard TL,Nevin KP,Xia QF,Tuominen MT,Lovley DR.Synthetic Biological Protein Nanowires with High Conductivity.Small,2016,12(33):4481-4485.
    [34]Tan Y,Adhikari RY,Malvankar NS,Ward JE,Woodard TL,Nevin KP,Lovley DR.Expressing the Geobacter metallireducens Pil A in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity.m Bio,2017,8(1):e02203-16.
    [35]Rabaey K,Rodríguez J,Blackall L L,Keller J,Gross P,Batstone D,Verstraete W,Nealson KH.Microbial ecology meets electrochemistry:electricity-driven and driving communities.The ISME Journal,2007,1(1):9-18.
    [36]Yong YC,Yu YY,Li CM,Zhong JJ,Song H.Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells.Biosensors and Bioelectronics,2011,30(1):87-92.
    [37]Yong XY,Shi DY,Chen YL,Feng J,Xu L,Zhou J,Wang SY,Yong YC,Sun YM,Ouyang PK,Zheng T.Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells.Bioresource Technology,2014,152:220-224.
    [38]Berríos-Rivera SJ,Bennett GN,San KY.The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.Metabolic Engineering,2002,4(3):230-237.
    [39]Yong XY,Feng J,Chen YL,Shi DY,Xu YS,Zhou J,Wang SY,Xu L,Yong YC,Sun YM,Shi CL,Ouyang PK,Zheng T.Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell.Biosensors and Bioelectronics,2014,56:19-25.
    [40]Yong YC,Yu YY,Yang Y,Liu J,Wang JY,Song H.Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.Biotechnology and Bioengineering,2013,110(2):408-416.
    [41]Biffinger JC,Byrd JN,Dudley BL,Ringeisen BR.Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.Biosensors and Bioelectronics,2008,23(6):820-826.
    [42]Choi D,Lee SB,Kim S,Min B,Choi I,Chang S.Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.Bioresource Technology,2014,154:59-66.
    [43]Flynn JM,Ross DE,Hunt KA,Bond DR,Gralnick JA.Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria.m Bio,2010,1(5):e00190-10.
    [44]Johnson ET,Baron DB,Naranjo B,Bond DK,Schmidt-Dannert C,Gralnick JA.Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.Applied and Environmental Microbiology,2010,76(13):4123-4129
    [45]Yong YC,Yu YY,Yang Y,Li CM,Jiang RR,Wang X,Wang JY,Song H.Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells.Electrochemistry Communications,2012,19:13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700