用户名: 密码: 验证码:
福建仙云洞空气CO_2浓度的空间分布及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution Characteristics and Influence Factors of Cave Air CO_2 Concentration in Xian Yun Cave,Fujian,China
  • 作者:王欢 ; 曹奇 ; 李苗发 ; 王芳 ; 雷国良 ; 蔡炳贵
  • 英文作者:WANG Huan;CAO Qi;LI Miaofa;WANG Fang;LEI Guoliang;CAI Binggui;School of Geological Sciences,Fujian Normal University;State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province,Fujian Normal University;Institute of Geography,Fujian Normal University;
  • 关键词:CO2浓度 ; 空间分布 ; 仙云洞 ; 福建
  • 英文关键词:CO2 concentration;;Spatial distribution;;Xian Yun Cave;;Fujian
  • 中文刊名:FJDL
  • 英文刊名:Journal of Subtropical Resources and Environment
  • 机构:福建师范大学地理科学学院;福建师范大学湿润亚热带山地生态国家重点实验室培育基地;福建师范大学地理研究所;
  • 出版日期:2018-12-15
  • 出版单位:亚热带资源与环境学报
  • 年:2018
  • 期:v.13
  • 基金:国家自然科学基金资助项目(41661144021);; 福建省科技厅自然科学基金项目(2015R1034-8);; 福建师范大学校创新团队项目(IRTL1705)
  • 语种:中文;
  • 页:FJDL201804006
  • 页数:7
  • CN:04
  • ISSN:35-1291/N
  • 分类号:38-44
摘要
洞穴CO_2浓度是影响洞穴次生化学沉积物沉积和溶蚀的重要因素之一,洞穴CO_2浓度与洞内外空气交换、裂隙流(滴)水以及洞穴空间形态等因素有关。因此,洞穴空气CO_2空间分布特征及其调控因素不仅是洞穴古气候重建研究的基础,同时也是洞穴旅游开发设计和洞穴资源保护的基础。对福建仙云洞的整个洞穴系统的CO_2浓度、温度进行了系统的野外现场测试,获得该洞穴夏季CO_2浓度的空间分布特征,结合洞穴结构、地下河分布等要素初步分析了夏季仙云洞洞穴空气CO_2浓度空间分布的主要影响因素及其对古气候重建和洞穴旅游开发的指示意义。结果表明:(1)夏季洞穴空气CO_2浓度变化介于400~2 800 u L·L-1,近洞口洞道、北洞和南洞之间空间差异显著,主要受洞穴结构特征和裂隙水分布控制;(2)近洞口(0~200 m)洞道宽大,总体倾斜向下,受洞穴内外空气交换的影响,CO_2浓度低,自洞口约400 u L·L-1逐渐增高到约550 uL·L-1,温度则快速下降。在距洞口约200 m,洞穴分叉,进入南北2个支洞系统后,CO_2浓度快速上升,但南北2个支洞系统CO_2浓度变化特征迥异;(3)北洞CO_2浓度相对较低,介于400~2 000 u L·L-1之间变化,不同洞道之间波动幅度大,这与北洞多变的洞道形状、时断时续的地下河以及不均匀的裂隙水分布有关,在部分裂隙水发育的洞道CO_2浓度异常增高,而在通风较好的平直洞道以及无裂隙水发育的地下河洞道CO_2浓度异常降低;(4)南洞则非常稳定,CO_2基本维持在2 250 u L·L-1左右,除了相对封闭且裂隙水发育的田园洞厅浓度稍高;(5)南洞相对封闭的洞穴环境,其石笋较北洞更适合开展古温度和古环境的重建工作;北洞更适合进行旅游开发活动。
        A survey is carried out to get the spatial distribution characteristics of the summer CO_2 con-centration and temperature in air of Xian Yun Cave,Longyan. Its main influencing factors are discussed and some results are reached:( 1) the summer cave CO_2 concentration,ranging from 400 to 2800 uL ·L-1,shows significant differences among different tunnels. In general,the CO_2 distribution,in terms of the overall characteristics of the cave structure,can be divided into three parts: tunnels near cave entrance,northern cave and southern cave;( 2) the contents of CO_2 are low at the tunnels near the cave entrance( 0 ~ 200 m) which is wide in cross section,and straight downward with a slope of around 30°. The CO_2 contents raise gradually from 400 u L·L-1 to about 550 u L·L-1. This trend is a result from air exchange between air inside the cave and atmosphere outside. At about 200 meters away from the entrance,the cave branch into several tunnels,named southern cave and northern cave.Then,the CO_2 concentrations increase abruptly;( 3) CO_2 concentration in northern cave is a little lower compared to those in southern. The values varied among 400 ~ 2 000 uL ·L-1,with large amplication in different tunnels during to complex tunnel structure and uneven distribution of infilter flowes and underground river. In some closed tunnels,where especially in rich of karst infilter flow,the CO_2 concentration increase abnormally. Conversely,whereas in straightness tunnel with well ventilation and in underground stream channel free of infilter flow,CO_2 concentration is abruptly decrease;( 4) CO_2 concentration in the southern cave is stable at about 2 250 u L·L-1 with little fluctuation,except for the Hall Tianyuan,where CO_2 concentration is slightly higher during to abundant of infilter flowes and relatively closed chamber;( 5) The relatively closed cave environment in southern cave is more suitable for the reconstruction of paleotemperature and paleoenvironment than the stalagmite. However,northern cave is more suitable for tourism development activities.
引文
[1]陈伟海,邓亚东,韩道山,等.桂林市芦笛岩、大岩洞穴环境特征[J].中国岩溶,2004,23(2):113-119.
    [2]蔡炳贵,沈凛梅,郑伟,等.本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶,2009,28(4):348-354.
    [3] SONG L H,WANG J,LIANG F Y,et al. Effect of human and natural factors on the environment of show caves[J]. Carsologica Sinica,2004,23(2):91-99.
    [4]童晓宁,周厚云,黄颖,等.广东英德宝晶宫CO2浓度的时空变化特征[J].热带地理,2013,33(4):439-443.
    [5]张强,周忠发,陈全,等.织金洞CO2浓度空间分布与昼夜变化的规律及成因分析[J].科学技术与工程,2016,16(26):18-27.
    [6]班凤梅,蔡炳贵.北京石花洞空气环境主要因子季节性变化特征研究[J].中国岩溶,2011,30(2):132-137.
    [7]王飞跃,董陇军.张家界观音洞洞穴环境的影响因素研究[J].现代矿业,2008,24(2):36-38.
    [8]宋林华,韦小宁,梁福源.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J].中国岩溶,2003,22(3):230-235.
    [9]杜金娥,张光生,王宁.蓬莱仙洞CO2浓度及温度的变化规律初探[J].中国农学通报,2008,24(3):395-400.
    [10]张强,周忠发,张绍云,等.织金洞洞穴环境CO2浓度的空间变化分析[J].地球与环境,2016,44(6):654-662.
    [11]王晓青,周长春,孙小银,等.旅游洞穴CO2及其环境效应——以山东沂源九天洞为例[C]//全国第十四届洞穴学术会议论文集,2008:113-121.
    [12]税伟,胡溢,张斌,等.兴文石海天泉洞CO2影响因素分析[J].四川地质学报,2009,(s1):1-6.
    [13]王晓青,周长春,孙小银,等.山东沂源九天洞洞穴环境变化监测分析[J].中国岩溶,2008,27(1):91-96.
    [14]潘艳喜,周忠发,李坡,等.旅游洞穴空气环境时空变化特征及其影响因素——以贵州省绥阳大风洞为例[J].中国岩溶,2016,35(4):425-431.
    [15]程珂,王庆,郑志惠,等.山东开元洞洞穴微气候环境变化与影响因素[J].鲁东大学学报(自然科学版),2017(3):267-273.
    [16]张萍,杨琰,孙喆,等.河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J].环境科学,2017,38(1):60-69.
    [17] MILANOLO S,GABROVEK F. Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave,Bosnia and Herzegovina[J]. Boundary~Layer Meteorology,2009,131(3):479-493.
    [18] CUEZVA S,FERNANDEZ~CORTES A,BENAVENTE D,et al. Short-term CO(g)exchange between a shallow karstic cavity and the external atmosphere during summer:Role of the surface soil layer[J]. Atmospheric Environment,2011,45(7):1418-1427.
    [19] BAKER A,GENTY D. Environmental pressures on conserving cave speleothems:Effects of changing surface land use and increased cave tourism[J]. Journal of Environmental Management,1998,53(2):165-175.
    [20]王绍鸿.福建天然洞穴的主要类型及其特征[J].中国岩溶,1998(3):221-226.
    [21]梁诗经,文斐成,兰莎,等.福建连城赖源溶洞化学沉积类型及成因[J].福建地质,2012,31(4):336-350.
    [22]李刚,俞锦标,朱诚,等.福建连城赖源洞穴系统研究与旅游开发探讨[J].中国岩溶,2001,20(4):253-259.
    [23]李剑玲.福建连城赖源岩溶景观特点及成因探讨[J].福建地质,2010,29(1):46-52.
    [24]张富强,李苗发,曹奇,等.闽西仙云洞空间结构特征及其影响因素浅析[J].亚热带资源与环境学报,2018,13(1):88-94.
    [25] MATTEY D P,ATKINSON T C,BARKER J A,et al. Carbon dioxide,ground air and carbon cycling in Gibraltar karst[J]. Geochimica Et Cosmochimica Acta,2016,184:88-113.
    [26]周运超,王世杰.贵州凉风洞洞穴滴水水文水化学过程分析[J].第四纪研究,2005,25(2):208-215.
    [27] CAI B,ZHU J,BAN F,et al. Intra-annual variation of the calcite deposition rate of drip water in Shihua Cave,Beijing,China and its implications for palaeoclimatic reconstructions[J]. Boreas,2011,40(3):525-535.
    [28] DUAN W,CAI B,TAN M,et al. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave,SW China revealed by cave monitoring[J]. Boreas,2012,41(1):113-123.
    [29] HENDY C H. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta,1971,35(8):801-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700