用户名: 密码: 验证码:
洋陆转换带类型特征和形成机理及其在南海北部的表现特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming Mechanism and Types Characteristics of Ocean-Continent Transition and Its Performance in Northern South China Sea
  • 作者:赵宏超 ; 朱筱敏 ; 葛家旺 ; 张维 ; 施瑞生
  • 英文作者:Zhao Hongchao;Zhu Xiaomin;Ge Jiawang;Zhang Wei;Shi Ruisheng;College of Geosciences,China University of Petroleum(Beijing);
  • 关键词:洋陆转换 ; 构造演化 ; 构造特征 ; 被动大陆边缘 ; 南海北部
  • 英文关键词:ocean-continent transition;;tectonic evolution;;tectonic characteristics;;passive continental margin;;northern South China Sea
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国石油大学(北京)地球科学学院;
  • 出版日期:2018-07-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.181
  • 基金:国家科技重大专项(2017ZX05001-002-002)
  • 语种:中文;
  • 页:DZKQ201804007
  • 页数:10
  • CN:04
  • ISSN:42-1240/P
  • 分类号:57-66
摘要
20世纪90年代以来,处于被动大陆边缘与洋盆接壤过渡地带的洋陆转换带(OCTs)因其上覆深水-超深水盆地群具有较大的工业性油气勘探潜力,且本身蕴含了丰富的岩石圈伸展破裂信息而备受关注,已成为当今国际学术研究热点。形成于被动大陆边缘伸展与洋盆扩张背景下的洋陆转换带具有地壳强烈减薄、宽30~170km、存在蛇纹岩或蛇纹石化橄榄岩、缺少铁镁质岩浆、梯度变化明显的地震波速度结构、较高的地表热流值等特殊的地质属性特征,根据岩浆活动的频繁与"Moho面"双层结构等具体信息将洋陆转换带划分为2型4类,即以岩浆剧烈活动、海倾地震反射体(SDRs)、高密度流体底侵和急剧减薄的陆壳为特征的岩浆型(A类)和以海倾拆离断层发育、陆壳相对均匀减薄和贫岩浆作用为特征的非岩浆型(B1、B2、B3类)。基于OCTs构造演化剖析了被动大陆边缘岩石圈伸展裂解进程,并将其总结为3个阶段:第一次纯剪切阶段(弥漫式平均伸展);简单剪切阶段(聚焦式细颈化-地幔出露);第二次纯剪切阶段(火山作用-岩石圈完全裂解)。在洋陆转换带的形成过程中,构造变形的"集中-迁移"现象对于上覆的深水-超深水盆地形态结构具有重要的影响作用。国内外OCTs研究历史和近况的系统调研成果表明,当前南海北部OCTs研究主要反映各种地球物理参数特点,而对OCTs的地质属性和界限仍然不清楚。以鹤山凹陷-双峰盆地为例的分析表明,南海北部发育海倾拆离断层和弱火山作用,洋陆转换带宽60~170km,东宽西窄,其中鹤山凹陷洋陆转换带宽约53.91km,为非典型的非岩浆型B3类洋陆转换带;鹤山凹陷构造演化受洋陆转换带的形成机制控制。分析洋陆转换带的类型特征与形成机理对于了解南海北部被动大陆边缘构造演化、深水-超深水盆地的成因机理有重要启示作用。
        Since the 1990 s,ocean-continent transitions(OCTs),located between passive continent margins and ocean basins,have become international academic research spots for overlying deep-ultra deep water basins which are potential for industrial oil and gas accumulation and OCTs themselves contain abundant information of lithospheric stretching and fracturing.OCTs,formed under the background of passive continent margin stretching and ocean basin expanding,have special characteristics of strongly thinning continent crust,existence of serpentinite and serpentinited peridoite,lack of mafic magma,obvious variance of seismic velocity structure and higher ground surface-heat flow value with the width ranging from 30 km to170 km.According to frequent magmatic activities and double structure of " Moho surface",OCTs can be classified into two types with four phases,namely,A,B1,B2 and B3.Based on the tectonic evolution of OCTs,the crustal stretching process of lithosphere at passive continental margins can be divided into three stages,pure shear stage(dispersion-type evenly extending),simple shear stage(centralized crust thinning;mantle being exposed),and pure shear(volcanic influence-lithosphere utmost breaking).During the formation of OCTs,varying tectonic deformations had important impact on overlying deep-ultra deep water basins.A systematic investigation of the historical and current research of OCTs indicates that the present studies of OCTs in northern South China Sea mainly focus on the various geophysical chracteristics and theres is still inadequate indentification of the geological attribute and boundeary.This study first introduces the analysis of Heshan Sag and Shuangfeng Basin and finds detachment faults grow with weak volcanism in the northern South China Sea.There,OCTs,a non-typical non-magmatic B3 type,stands between 60 km and 170 km in width,declining from the east to the west,including 53.91 km OCTs of Heshan-Shuangfeng tectonic evolution of Heshan Sag is deeply controlled by the OCTs mechanism.The analysis of the forming and characteristics of OCTs by tectono-sequence stratigraphy methods is useful for understanding tectonic evolution and the mechanism of deep-ultra deep water basins in northern South China Sea passive continental margins.
引文
[1]汪品先.我国参加大洋钻探的近十年回顾与展望[J].地球科学进展,2014,29(3):322-326.
    [2]Boillot G,Recq M,Winterer E L,et al.Tectonic denudation of the upper mantle along passive margins:A model based on drilling results(ODP Leg 103,western Galicia margin,Spain)[J].Tectonophysics,1987,132(4):335-342.
    [3]Minshull T A,Dean S M,Whitmarsh R B,et al.Deep structure in the vicinity of the ocean-continent transition zone under the southern Iberia Abyssal Plain[J].Geology,1998,26(26):743-746.
    [4]Femfindez-Viejo G,Gallart J,Pulgar J A,et al.Crustal transition between continental and oceanic domains along the North Iberian margin from wide angle seismic and gravity data[J].Geophysical Reserch Letters,1998,25(23):4249-4252.
    [5]Manatschal G,Bernoulli D.Architecture and tectonic evolution of nonvolcanic margins:Present-day Galicia and ancient Adria[J].Tectonics,1999,18(6):1099-1119.
    [6]Sutra E,Manatschal G.How does the continental crust thin in a hyperextended rifted margin:Insights from the Iberia margin[J].Geology,2012,40(2):139-142.
    [7]Abdelmalak M M,Andersen T B,Planke S,et al.The oceancontinent transition in the mid-Norwegian margin:Insight from seismic data and an onshore Caledonian field analogue[J].Geology,2015,43(11):1011-1014.
    [8]Reid I D.Crustal structure of a nonvolcanic rifted margin east of Newfoundland[J].Jounal of Geophysical Research:Solid Earth,1994,99(B8):15161-15180.
    [9]Chian D,Louden K E,Minshull T A,et al.Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles:1.Ocean Drilling Program(Legs 149and 173)transect[J].Jounal of Geophysical Reserch:Solid Earth,1999,104(B4):7443-7462.
    [10]Dean S M,Minshull T A.Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles′The IAM-9transect at 40°20′N[J].Jounal of Geophysical Reserch:Solid Earth,2000,105(B3):5859-5885.
    [11]Louden K E,Chian D.The deep structure of non-volcanic rifted continental margins[J].Philosophical Transactions Mathematical Physical&Engineering Sciences,1999,357:767-804.
    [12]Dragoi-Stavar D,Hall S.Gravity modeling of the ocean-continent transition along the South Atlantic margins[J].Jounal of Geophysical Reserch:Solid Earth,2009,114(B9):B9401.
    [13]Lucazeau F,Leroy S,Rolandone F,et al.Heat-flow measurements at the ocean-continent transition of the eastern Gulf of Aden[J].Earth and Planetary Science Letters,2010,295(3):554-570.
    [14]Pereira R,Alves T M,Cartwright J.Post-rift compression on the SW Iberian margin(eastern North Atlantic):A case for prolonged inversion in the ocean-continent transition zone[J].Journal of the Geological Society,2011,168(6):1249-1263.
    [15]Franke D,Savva D,Pubellier M,et al.The final rifting evolution in the South China Sea[J].Marine and Petroleum Geology,2014,58(B):704-720.
    [16]Pichot T,Delescluse M,Chamot-Rooke N,et al.Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J].Marine and Petroleum Geology,2014,58(B):627-643.
    [17]丁巍伟,黎明碧,何敏,等.南海中北部陆架-陆坡区新生代构造-沉积演化[J].高校地质学报,2009,15(3):339-350.
    [18]唐勇,黎明碧,方银霞,等.南海北部大陆边缘深水区下陆坡盆地沉积特征[J].地球科学:中国地质大学学报,2011,36(5):869-876.
    [19]朱俊江,丘学林,徐辉龙,等.南海北部洋陆转换带地震反射特征和结构单元划分[J].热带海洋学报,2012,31(3):28-34.
    [20]雷超,任建业,佟殿君.南海北部洋陆转换带盆地发育动力学机制[J].地球物理学报,2013,56(4):1287-1299.
    [21]纪沫,杨海长,曾清波.南海北部深水区鹤山凹陷构造演化及其油气地质意义[J].长江大学学报:自然科学版,2015,12(17):19-23.
    [22]解习农,任建业,王振峰,等.南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J].地学前缘,2015,22(1):77-87.
    [23]钱星,张莉,易海,等.南海北部双峰南陆坡区的构造层序及沉积充填过程[J].海洋地质与第四纪地质,2015,35(1):21-27.
    [24]石宁,袁立忠,刘军,等.鹤山凹陷烃源岩分布特征研究[J].断块油气田,2013,20(5):556-559.
    [25]任建业,庞雄,雷超,等.被动陆缘洋陆转换带和岩石圈伸展破裂过程及其对南海陆缘深水盆地研究的启示[J].地学前缘,2015,22(1):102-114.
    [26]刘军.南海北部超深水区鹤山凹陷古近系沉积充填特征分析[J].石油天然气学报:江汉石油学院报,2013,35(7):15-18.
    [27]Zhu J,Qiu X,Kopp H,et al.Shallow anatomy of a continent-ocean transition zone in the northern South China Sea from multichannel seismic data[J].Tectonophysics,2012,554(4):18-29.
    [28]Whitmarsh R B,White R S,Horsefield S J,et al.The oceancontinent boundary off the western continental margin of Iberia:Crustal structure west of Galicia Bank[J].Journal of Geophysical Reserch:Solid Earth,1996,101(B12):28291-28314.
    [29]Whitmarsh R B,Pinheiro L M,Miles P R,et al.Thin crust at the western Iberia ocean-continent transition and ophiolites[J].Tectonics,1993,12(5):1230-1239.
    [30]Whitmarsh R B,Manatschal G,Minshull T A.Evolution of magama-poor continental margins from rifting to seafloor spreading[J].Nature,2012,413:326-341.
    [31]Mckenzie D P.Some remarks on the development of sedimentary basins[J].Earth and Planetary Science Letters,1978,40(1):25-32.
    [32]Wernicke B.Low-angle normal faults in the Basin and Range Province:Nappe tectonics in an extending orogen[J].Nature,1981,291:645-648.
    [33]Buck W R.Modes of continental lithospheric extension[J].Journal of Geophysical Research:Solid Earth,1991,96(B12):20161-20178.
    [34]Boillot G.Some remarks on the continental margins in the Aquitaine and French Pyrenees[J].Geological Magazine,1984,121(5):407-412.
    [35]Boillot G,Froitzheim N.Non-volcanic rifted margins,continental break-up and the onset of sea-floor spreading:Some outstanding questions[J].Geological Society London Special Publications,2001,187(1):9-30.
    [36]Leroy S,Razin P,Autin J,et al.From rifting to oceanic spreading in the Gulf of Aden:A synthesis[J].Arabian Journal of Geosciences,2012,5(5):859-901.
    [37]Mutter J C.Margins declassified[J].Nature,1993,364:393-394.
    [38]Yan P,Deng H,Liu H,et al.The temporal and spatial distribution of volcanism in the South China Sea region[J].Journal of Asian Earth Sciences,2006,27(5):647-659.
    [39]Hopper J R,Funck T,Tucholke B E,et al.Continental breakup and the onset of ultraslow seafloor spreading of Flemish Cap on the Newfoundland rifted margin[J].Geology,2004,32(1):93-96.
    [40]Tucholke B E,Sawyer D S,Sibuet J C.Breakup of the Newfoundland-Iberia rift[J].Geological Society London Special Publications,2007,282(1):9-46.
    [41]Pin Y,Di Z,Zhaoshu L.A crustal structure profile across the northern continental margin of the South China Sea[J].Tectonophysics,2001,338(1):1-21.
    [42]Geoffroy L.Volcanic passive margins[J].Comptes Rendus Geoscience,2005,337(16):1395-1408.
    [43]Huismans R,Beaumont C.Depth-dependent extension,twostage breakup and cratonic underplating at rifted margins[J].Nature,2011,473:74-78.
    [44]Cowie L,Angelo R M,Kusznir N,et al.Structure of the oceancontinent transition,location of the continent-ocean boundary and magmatic type of the northern Angolan margin from integrated quantitative analysis of deep seismic reflection and gravity anomaly data[J].Geological Society London Special Publications,2016,438(1):159-176.
    [45]姜素华,高嵩,李三忠,等.西太平洋洋陆过渡带重磁异常与构造格架[J].地学前缘,2017,24(4):152-170.
    [46]Ceramicola S,Stoker M,Praeg D,et al.Anomalous Cenozoic subsidence along the"passive"continental margin from Ireland to mid-Norway[J].Marine and Petroleum Geology,2005,22(9):1045-1067.
    [47]Menzies M A,Klemperer S L,Ebiger C J,et al.Characteristics of volcanic rifted margins[J].Special Paper of the Geological Society of America,2012,362:1-14.
    [48]Sandwell D T,Smith W H F.Marine gravity anomaly from Geosat and ERS 1satellite altimetry[J].Journal of Geophysical Research:Solid Earth,1997,102(B5):10039-10054.
    [49]Blaich O A,Faleide J I,Tsikalas F.Crustal breakup and continent-ocean transition at South Atlantic conjugate margins[J].Journal of Geophysical Research:Solid Earth,2011,116(B1):B01402.
    [50]Funck T,Hopper J R,Larsen H C,et al.Crustal structure of the ocean-continent transition at Flemish Cap:Seismic refraction results[J].Journal of Geophysical Research:Solid Earth,2003,108(B11):2531.
    [51]Nemcok M,Sinha S T,Stuart C J,et al.East Indian margin evolution and crustal architecture:Integration of deep reflection seimic interpretation and gravity modelling[J].Geographysical Journal International,2013,369(1):477-496.
    [52]邵济安,唐克东.东北亚中生代洋陆过渡带的研究及启示[J].岩石学报,2015,31(10):3147-3154.
    [53]夏成龙,郑彦鹏,董冬冬,等.菲律宾海盆磁条带特征及61Ma以来的海底扩张过程重建[J].海洋地质与第四纪地质,2017,31(1):30-40.
    [54]武爱俊,滕彬彬,张树林,等.火山型被动大陆边缘SDR形成机理及其对烃源岩的影响[J].地质科技情报,2014,33(6):110-118.
    [55]赵钊,赵志刚,沈怀磊,等.南海北部超深水区双峰盆地构造演化与油气地质条件[J].石油学报,2016,37(11):47-57.
    [56]朱筱敏,葛家旺,宋爽,等.南海北部长昌-鹤山凹陷渐新世陆架边缘三角洲-深水扇地震响应及形成条件[J].古地理学报,2016,18(3):367-380.
    [57]Sengor A M C,Burke K.Relative timing of rifting and volcanism on Earth and its tectonic implications[J].Geophysical Research Letters,1978,5(6):419-421.
    [58]Mckenzie D P,Bickle M J.The volume and composition of melt generated by extension of the lithosphere[J].Journal of Petrology,1988,29(3):625-679.
    [59]Mohn G,Manatschal G,Beltrando M,et al.Necking of continental crust in magma-poor rifted margins:Evidence from the fossil Alpine Tethys margins[J].Tectonics,2012,31(1):TC1012.
    [60]Davy R G,Minshull T A,Bayrakci G,et al.Continental hyperextension,mantle exhumation,and thin oceanic crust at the continent-ocean transition,West Iberia:New insights from wide-angle seismic[J].Journal of Geophysical Research:Solid Earth,2016,121(B5):3177-3199.
    [61]Dmitrienko L V,Li S Z,Cao X Z,et al.Large-scale morphotectonics of the ocean-continent transition zone between the Western Pacific Ocean and the East Asian Continent:A link of deep process to the Earth′s surface system[J].Geological Journal,2016,51(S1):263-285.
    [62]Hirsch K K,Bauer K,Scheck Wenderoth M,et al.Deep structure of the western South African passive margin:Results of a combined approach of seismic,gravity and isostatic investigations[J].Tetonophysics,2009,470(1):57-70.
    [63]Fernandez M,Afonso J C,Ranalli G,et al.The deep lithospheric structure of the Namibian volcanix margin[J].Tectonophysics,2010,481(1):68-81.
    [64]郭玲莉,李三忠,赵淑,等.洋陆转换带类型与成因机制[J].地学前缘,2017,24(4):320-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700