用户名: 密码: 验证码:
北京地区太阳能、空气源热泵、发电余热联合沼气工程增温系统研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three Heat Resources Combined Heating System for Biogas Project in Beijing
  • 作者:李金平 ; 刘润 ; 崔维栋 ; 黄娟娟
  • 英文作者:LI Jin-ping;LIU Run;CUI Wei-dong;HUANG Juan-juan;Western China Energy&Environment Research Center,Lanzhou University of Technology;China Northwestern Collaborative Innovation Center of Low-carbon Urbanization Technologies;Lanzhou university of technology College of energy and power engineering;Key Laboratory of Energy Supply System Drived by Biomass Energy and Solar Energy of Gansu Province;
  • 关键词:增温系统 ; 太阳能 ; 空气源热泵 ; 发电余热 ; 沼气工程
  • 英文关键词:heating system;;solar energy;;air source heat pump;;power waste heat;;biogas project
  • 中文刊名:ZGZQ
  • 英文刊名:China Biogas
  • 机构:兰州理工大学西部能源与环境研究中心;西北低碳城镇支撑技术协同创新中心;兰州理工大学能源与动力工程学院;甘肃省生物质能与太阳能互补供能系统重点实验室;
  • 出版日期:2019-04-20
  • 出版单位:中国沼气
  • 年:2019
  • 期:v.37;No.170
  • 基金:国家自然科学基金(51676094);; 甘肃省国际科技合作专项(1604WKCA009);; 甘肃省自然科学基金项(1508RJYA097)
  • 语种:中文;
  • 页:ZGZQ201902012
  • 页数:7
  • CN:02
  • ISSN:51-1206/S
  • 分类号:64-70
摘要
为了解决北京地区大中型沼气工程增温问题,文章结合北京地区气候特点,构建了一套太阳能、空气源热泵、发电余热联合沼气增温系统,阐述了系统设计的原理,计算和分析了发酵罐的热负荷、太阳能集热器集热量、空气源热泵供热量、沼气发电余热量和系统的经济性。结果表明:3种联合增温系统的作用下料液的温度能够一直维持在(37℃±1℃)范围内,在中温厌氧发酵范围内产气也达到最佳,取得了良好的试验效果。沼气工程全年月平均热量损失为7325.0 MJ,太阳能、空气源热泵、发电余热联合沼气增温系统月平均产热量为7464.1 MJ,可以完全满足工程的热量需要,保证整个系统稳定运行。同时也具有良好的经济效益性,对今后在北京的大中型沼气工程中具有一定的的参考意义。
        In order to solve the problem of increasing temperature for large and medium-sized biogas projects in Beijing,a set of combined heating system including solar energy, air source heat pump and power generation waste heat was built according to the climate characteristics in Beijing. The article described the principle of system design, calculated and analyzed the heat load of the fermentation tank, the heat collection of solar collector,the heat supply of air source heat pump,the residual heat of biogas power generation, and the economy of the system. The results showed that the temperature of the fermentation liquid could be maintained at 37℃±1℃ under the action of the three combined heating systems and the gas production reached the best within the range of medium temperature anaerobic fermentation. The average monthly heat loss of biogas project was 7325.0 MJ,and the average monthly heat production of this combined heating system was 7464.1 MJ,so it could fully meet the heat requirement of the project and ensures the stable operation of the whole system. At the same time, it also had good economic benefit.
引文
[1] 寇巍,张欢,孙玉辉,等.寒冷地区沼气工程增温保温能量效益分析[J].太阳能学报,2015,36(03):708-713.
    [2] 张冰芝,吕建.寒冷地区小型沼气源热电联产系统设计与试验[J].天津城建大学学报,2015,21(01):55-59.
    [3] 王兰,邓良伟,王霜,等.畜禽粪污沼气发电工程中的加热能量平衡分析[J].中国沼气,2016,34(06):65-71.
    [4] Det Damrongsak,Chatchawan Chaichana,Wongkot Wongsapai.Small-scale biogas plant from swine farm in northern thailand[J].Energy Procedia,2017,141:165-169.
    [5] Shivika Mittal,Erik O Ahlgren,P R Shukla.arriers to biogas dissemination in India:A review[J].Energy Policy,2018,112:361-370.
    [6] 日本能源学会.生物质和生物能源手册[M].北京:化工出版社,2007.
    [7] 罗光辉,盛力伟,丁建华,等.大中型沼气工程保温增温方法研究[J].农机化研究,2011,(9):227-231.
    [8] 熊昌国,谢祖琪,刘建辉,等.沼气工程高效升温保温影响因素的试验研究[J].西南大学学报(自然科学版),2012,34(11):117-124。
    [9] Chen L,Zhao L,Ren C,et al.The proress and prospects of rural biogas production in china[J].Energy Policy,2012,51:58-63.
    [10] 李东,叶景清,王世光,等.稻草与猪粪连续混合厌氧消化制备生物燃气研究[J].太阳能学报,2014,35(10):1850-1856.
    [11] Liangwei Deng,Yi Liu,Dan Zheng,et al.Application and development of biogas technology for the treatment of waste in China[J].Renewable and sustainable energy review,2017,70:845-851.
    [12] 寇巍,郑磊,曲静霞,等.太阳能与发电余热复合沼气增温系统设计[J].农业工程学报,2013,29(24):211-217.
    [13] 蒲小东,邓良伟,尹勇,等.大中型沼气工程不同加热方式的经济效益分析[J].农业工程学报,2010,26(07):281-284.
    [14] 丁福贵,王润强,张炳宏,等.寒冷地区畜禽粪便沼气发电工程典型案例分析[J].中国沼气,2012,30(2):20-24.
    [15] 姚利,王艳芹,袁长波,等.高效沼气微生物菌剂的冬季产气试验[J].山东农业科学,2010,2:57-60.
    [16] 李深,刘青荣,阮应君,等.中型养殖场沼气综合利用系统的运行模式和选型优化[J].中国沼气,2015,33(04):73-76.
    [17] 赵焱焱.水泥纯低温余热发电优化控制软件的研发[D].济南:济南大学,2011.
    [18] 徐振军.复合发电系统的沼气热泵供能特性研究[J].农业机械学报,2011,42(7):144-147.
    [19] 李金平,曹岗林,曹忠耀,等.兰州太阳能与发电余热增温沼气工程的性能研究[J].中国沼气,2017,35(02):90-95.
    [20] 胡振杰,郭福雁,李宪莉,等.利用太阳能的沼气发酵装置增温系统方案比选[J].煤气与热力,2015,35(06):6-8,17.
    [21] 陶三奇,谢虎,王鹏军,等.发电余热与太阳能耦合增温系统设计与应用[J].江苏农业科学,2016,44(05):380-383.
    [22] 常婧,任绳凤,管德星.大中型沼气工程增温及控制系统运行管理策略[J].太阳能学报,2017,38(08):2077-2082.
    [23] Zupancic G D,Ros M.Heat and energy requirements in thermophilic anaerobic sludge digestion[J].Renewable Energy,2003,28(14):2255-2267.
    [24] Krakat N,Westphal A,Schmidt S,et al.Anaerobic Digestion of Renewable Biomass:Thermophilic Temperature Governs Methanogen Population Dynamics[J].Applied Environmental Microbiology,2010,76(6):1842-1850.
    [25] Cassendra Phun Chien Bong,Wai Shin Ho,Haslenda Hashim,et al.Review on the renewable energy and solid waste management policies towards biogas development in Malaysia[J].Renewable and sustainable energy reviews,2017,70:988-998.
    [26] 石惠娴,王韬,朱洪光,等.地源热泵式沼气池加温系统[J].农业工程学报,2010,26(02):268-273.
    [27] 王亚静,张弛,高春雨,等.我国北方地区沼气工程冬季增温保温技术研究进展与展望[J].中国沼气,2017,35(3):93-99.
    [28] Akbulut A.Techno-economic analysis of electricity and heat generation from farm-scale biogas plant:Cicekda case study[J].Energy,2012,44(1):381-390.
    [29] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [30] 刘艳峰,刘加平.建筑外壁面换热系数分析[J].西安建筑科技大学学报(自然科学版),2008,40(3):407-412.
    [31] 耿玉清,杜建玲,刘燕.北京低山区土壤水热状况的研究[J].河北林果研究,2000,15(1):10-14.
    [32] 林妮娜,庞昌乐,陈理,等.利用能值方法评价沼气工程性能山东淄博案例分析[J].可再生能源,2011,29(03):61-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700