用户名: 密码: 验证码:
蜂窝式轴心通风器油气分离性能计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computation on oil/gas separation performance of axial breather with honeycomb structure
  • 作者:赵静宇 ; 刘振侠 ; 吕亚国 ; 胡剑平 ; 任国哲
  • 英文作者:ZHAO Jing-yu;LIU Zhen-xia;Lü Ya-guo;HU Jian-ping;REN Guo-zhe;School of Power and Energy,Northwestern Polytechnical University;
  • 关键词:航空发动机 ; 轴心通风器 ; 蜂窝结构 ; 油气两相流 ; 油滴/壁面相互作用 ; 油气分离效率
  • 英文关键词:aero-engine;;axial breather;;honeycomb structure;;oil/gas two-phase flow;;droplet/wall interaction;;oil/gas separation efficiency
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:西北工业大学动力与能源学院;
  • 出版日期:2016-07-05 15:04
  • 出版单位:航空动力学报
  • 年:2016
  • 期:v.31
  • 语种:中文;
  • 页:HKDI201607006
  • 页数:8
  • CN:07
  • ISSN:11-2297/V
  • 分类号:52-59
摘要
为对航空发动机蜂窝式轴心通风器油气分离效率进行研究,建立考虑油气双向耦合的流场计算方法及油滴/壁面相互作用模型,在验证通风阻力及油气分离效率可靠性的基础上,对不同转速、通风流量和环境温度下蜂窝式轴心通风器的油气分离效果进行计算和分析.结果表明:转速的增加会使油气分离效率得到提升,而通风流量和环境温度的增加则导致油气分离效率的降低.蜂窝孔结构的加入对通风阻力影响不大,却对通风器的滑油分离过程起主要作用,计算表明其对滑油分离贡献率在80%以上.
        To study the oil/gas separation efficiency of axial breather with honeycomb structure in aero-engine,the oil/gas two-way coupled flow mathematical model and oil droplet impaction model with the wall were established.On the basis of verifying the rationality of flow resistance and oil/gas separation efficiency,the effects of the oil/gas separation performance of axial breather with honeycomb structure under different rotational speeds,mass flow rates and enviromental temperatures were calculated and analyzed.Results show that the increase of rotational speed will improve the oil/gas separation efficiency,while the increase of mass flow rate and enviromental temperature will lead to the decrease of the oil/gas separation efficiency.The honeycomb hole structure has little effect on flow resistance,but plays a major role in the oil separation of axial breather,where the contribution rate to the oil separation accounts for 80% or more.
引文
[1]林基恕.航空燃气涡轮发动机机械系统设计[M].北京:航空工业出版社.2005.
    [2]Willenborg K,Klingsporn M,Tebby S,et al.Experimental analysis of air/oil separator performance[J].Journal of Engineering for Gas Turbines and Power,2008,130(3):1495-1506.
    [3]Elsayed K,Lacor C.Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations[J].Chemical Engineering Science,2010,65(22):6048-6058.
    [4]Eastwick C N,Simmons K,Wang Y,et al.Study of aeroengine oil-air separators[J].Journal of Power and Energy,2006,220(7):707-717.
    [5]徐让书,宗庆贺,刘立博,等.湍流弥散对轴心通风器油气分离过程的影响[J].航空发动机,2011,37(4):5-9.XU Rangshu,ZONG Qinghe,LIU Libo,et al.Effect of turbulent dispersion on oil/gas separation process in axial ventilator[J].Aeroengine,2011,37(4):5-9.(in Chinese)
    [6]Gorse P,Busam S,Dullenkopf K.Influence of operating condition and geometry on the oil film thickness in aeroengine bearing chamber[J].Journal of Engineering for Gas Turbines and Power,2006,128(1):103-110.
    [7]Bachalo D W.Measurement techniques for turbulent twophase flow research[R].Beijing:International Symposium on Multiphase Fluid,Non-Newtonian Fluid and Physicochemical Fluid Flows,1997.
    [8]吕亚国,张美华,刘振侠,等.航空发动机轴承腔油气两相流流动数值研究及验证[J].航空动力学报,2014,29(11):2751-2757.LYaguo,ZHANG Meihua,LIU Zhenxia,et al.Numerical study and validation for two-phase flow of oil and gas in aero-engine bearing chambers[J].Journal of Aerospace Power,2014,29(11):2751-2757.(in Chinese)
    [9]赵静宇,刘振侠,胡剑平,等.考虑油气传传质耦合的轴承腔内壁油膜运动研究[J].推进技术,2014,35(7):973-980.ZHAO Jingyu,LIU Zhenxia,HU Jianping,et al.Motion of wall oil film with consideration of oil-gas coupled heat and mass transfer in the bearing chamber[J].Journal of Propulsion Technology,2014,35(7):973-980.(in Chinese)
    [10]Farrall M,Simmons S,Hibberd S,et al.Modeling oil droplet/film interaction in an aero-engine bearing chamber and comparison with experimental data[R].ASME Paper GT2004-53698,2004.
    [11]BAI Chengxin,Gosman A D.Development of methodology for spray impingement simulation[R].Society of Automotive Engineers,SAE Technical Paper Series 950283,1995.
    [12]胡剑平,刘振侠,张丽芬.发动机整流支板大尺寸过冷水滴撞击特性[J].航空学报,2011,32(10):1778-1785.HU Jianping,LIU Zhenxia,ZHANG Lifen.Research on supercooled large droplet impact behaviors on an aeroengine strut[J].Acta Aeronautica et Astronautica Sinica,2011,32(10):1778-1785.(in Chinese)
    [13]Berlemont A,Grancher M,Gouesbet G.Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach[J].International Journal of Heat and Mass Transfer,1994,38(16):3023-3034.
    [14]William B W,Mark G P.Semi-empirical modeling of SLD physics[R].AIAA-2004-0412,2004.
    [15]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [16]Trujilloy M F,Mathews W S,Lee C F,et al.Modeling and experiment of impingment and atomization of a liquid spray on a wall[J].International Journal of Engine Research,2000,1(1):87-105.
    [17]Mundo C,Tropea C,Sommerfeld M.Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall[J].Experimental Thermal and Fluid Science,1997,15(3):228-237.
    [18]Wolfshtein M.The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient[J].International Journal of Heat Mass Transfer,1969,12(3):301-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700