用户名: 密码: 验证码:
低轨道紫外、带电粒子、热循环与原子氧协合效应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in research on low-orbit ultraviolet, charged particles, thermal cycling and atomic oxygen synergistic effects
  • 作者:翟睿琼 ; 任国华 ; 田东波 ; 李宇 ; 杨艳斌 ; 刘宠
  • 英文作者:ZHAI Rui-qiong;REN Guo-hua;TIAN Dong-bo;LI Yu;YANG Yan-bin;LIU Chong;Beijing Institute of Spacecraft Environment Engineering;
  • 关键词:原子氧 ; 紫外 ; 带电粒子 ; 热循环 ; 协合效应
  • 英文关键词:atomic oxygen;;ultraviolet;;charged particles;;thermal cycling;;synergistic effect
  • 中文刊名:ZKZK
  • 英文刊名:Vacuum
  • 机构:北京卫星环境工程研究所;
  • 出版日期:2019-01-25
  • 出版单位:真空
  • 年:2019
  • 期:v.56;No.285
  • 语种:中文;
  • 页:ZKZK201901029
  • 页数:5
  • CN:01
  • ISSN:21-1174/TB
  • 分类号:82-86
摘要
文章简述了原子氧、紫外辐照、带电粒子辐照和热循环等低轨道空间环境因素对材料性能的影响,综述了紫外辐照、带电粒子辐照和温度循环对原子氧与材料的交互作用的协合效应,为材料空间环境效应的地面模拟试验提供了参考,也为材料的多因素协合效应研究提供了依据。
        This article briefly describes the effects of low-orbit space environmental factors such as atomic oxygen, ultraviolet radiation, charged particle irradiation and thermal cycling on material properties. The synergistic effects of ultraviolet radiation,charged particle irradiation and temperature cycling on the interaction of atomic oxygen with materials are reviewed. It provides a reference for ground simulation experiments of material space environmental effects, and also provides a basis for the study of multi-factor synergistic effects of materials.
引文
[1] Denkins P, Badhwar G., Obot V. Radiation Transport and Assessment to Better Predict Radiation Exposure, Dose,and Toxicological Effects to Human Organs on Long Duration Space Flights[J]. Acta Astronautica. 2001,49(3):313-319.
    [2] Kiefer J. Radiation Risk in Manned Space Flights[J].Mutation Research. 1999,430(2):307-313.
    [3]都亨,叶宗海.低轨道航天器空间环境手册[M].北京:国防工业出版社, 1996:402-404.
    [4]杨晓宁,杨勇.航天器空间环境工程[M].北京:宇航出版社, 2018:4-7.
    [5] Dooling D. Material selection guide to limit atomic oxygen effects on spacecraft surfaces[R].NASA/TP-1999-209260.
    [6] Arnold G S, Peplinski D R. Reaction of high-velocity atomic oxygen carbon[J]. AIAA Journal, 1984,24(4):673-677.
    [7]贾乃华.宇航物理[M].北京:科学出版社, 1990:7-8.
    [8] Zhang G., Pitt W G., Goates S R. Studies on oxidative photo degradation of epoxy resins by IR-ATR spectroscopy[J]. Journal of Applied Polymer Science. 1994,(54):419-427.
    [9] George P E, Dursch H W. Low earth orbit effects on organic composites flown on the long duration exposure facility[J].Journal of Advance Materials, 1994,25(3):10-19.
    [10] KleinⅢT F, Lesieutre G A. Space environment effects on damping of polymer matrix carbon fiber composites[J].Journal of Spacecraft and Rockets, 2000,37(4):519-525.
    [11] Koontz S, Leger L, Albyn K. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity[J]. Journal of Spacecraft, 1990,27(3):346-348.
    [12]人造地球卫星手册[M].工业出版社.1971:43.
    [13] Mauri R E, Crossman F W. Space radiation effects on structural composites[C]. In:AIAA 21st Aerospace Sciences Meeting,1983.
    [14]张建可,冀勇夫,李智华,等.粒子辐照对碳纤维复合材料力学性能影响[J].中国空间科学技术. 1998,18(1):56-59.
    [15] Bowles D E, Tompkins S S, Sykes G F. Electron radiation effects on the thermal expans ion of graphite resin composites[J]. Journal of Spacecraft and Rockets. 1986,23(6):625629.
    [16] Mauri R E, Crossman F W. Space radiation effects on structural composites[R]. In:AIAA 21st Aerospace Sciences Meeting, 1983.
    [17]王浚,黄本诚,万才大,等.环境模拟技术[M].北京:国防工业出版社, 2014,214-217.
    [18] Nairn J A. The strain energy release rate of composite microcracking-a variational approach[J]. Journal of Composite Materials, 1989,23(11):1106-1129.
    [19] Stephen S, Tompkins. Effects of thermal cycling on residual mechanical properties of C6000/PMR-15 graphite polyimide[R]. NASA 82-0710.
    [20] Tenney D R, Sykes G F, Bowles D E. Space environmental effects on materials[J]. AGARD Meeting on Environmental Effects on Materials for Space Applications, 1982,24:1-4.
    [21] Zimcik D G, Koike B M. Design of thermally stable graphite/aluminum tubular structures for space applications[J]. SAMPE Quarterly, 1990,21(2):11-16
    [22] T. King, Warren Wilson. Synergistic effects of atomic oxygen with electrons[R]. AIAA-97-3901
    [23] Connell J W, Young P R, et al. The effects of low earth orbit exposure on some experimental fluorine and silicon-containing polymer[C]. NASA goddard space flight center, the 18th space simulation conference:Space mission success through testing, 1994:157-175.
    [24]彭桂荣,等.真空紫外辐射对聚合物材料的作用[J].宇航材料工艺. 2001,31(5):12-18.
    [25]沈自才,邱家稳,丁义刚,等.航天器空间多因素环境协同效应研究[J].中国空间科学技术.2012,32(5):54-60.
    [26] Rasoul F A, Hill D J T, Forsythe J S et al. Surface properties of fluorinated PIs exposed to VUV and AO[J]. Jounal of Applied Polymer Science, 1995,58(10):1857-1864.
    [27] Koontz S, leger L, Allbyn K, Cross J. VUV radiation/AO synergism in materials reacting[J]. Journal of Spacecraft,1990,27(3):346-348.
    [28]沈志刚,赵小虎,等.空间材料Kapton的真空紫外与原子氧复合效应研究[J].北京航空航天大学学报.2003 29(11):984-987.
    [29] Joyce A. Dever, Eric J.Bruckner, et al. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surface[C]. 30th Aerospace Sciences Meeting&Exnibit, AIAA-92-0794.
    [30]赵小虎,沈志刚.空间用聚四氟乙烯材料的原子氧、温度、紫外辐射效应的试验研究[J].航空学报. 2001,22(3):235-239.
    [31]赵小虎,沈志刚.碳纤维/环氧复合材料的原子氧剥蚀效应试验研究[J].北京航空航天大学学报.2002,28(6):668-670.
    [32]赵小虎,沈志刚.空间Kapton材料的原子氧、温度、紫外辐射效应的试验研究[J].北京航空航天大学学报. 2001,27(6):670-673.
    [33]郭亮,姜利祥,李涛.样品温度对原子氧环境下ITO/Kapton/Al涂层性能变化的影响[J].航天器环境工程. 2009,26(4):326-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700