用户名: 密码: 验证码:
质子交换膜燃料电池铂电催化剂的稳定策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stabilization Strategies of Pt Catalysts for Proton Exchange Membrane Fuel Cells
  • 作者:何大平 ; 木士春
  • 英文作者:HE Da-ping;MU Shi-chun;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:质子交换膜燃料电池 ; 铂催化剂 ; 载体 ; 电化学性能 ; 稳定策略
  • 英文关键词:proton exchange membrane fuel cell;;Pt catalyst;;support;;electrochemical performance;;stability strategy
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2019-01-23 16:46
  • 出版单位:电化学
  • 年:2018
  • 期:v.24;No.110
  • 基金:国家自然科学基金项目(No.51701146,No.51672204,No.51372186,No.50972112)资助
  • 语种:中文;
  • 页:DHXX201806008
  • 页数:9
  • CN:06
  • ISSN:35-1172/O6
  • 分类号:88-96
摘要
质子交换膜燃料电池使用寿命低是制约其商业化应用的主要瓶颈.其中,影响质子交换膜燃料电池寿命的一个主要因素是其所广泛使用的贵金属铂基电催化剂在燃料电池苛刻的运行环境下(如可变电压、强酸性、气液两相流等)容易发生降解,导致电催化剂性能衰减,从而降低了质子交换膜燃料电池的使用寿命.因此,如何保持铂基电催化剂的电化学稳定性已成为质子交换膜燃料电池稳定性研究中的重大科学问题.本论文基于作者在该领域的长期研究成果,评述了应用于质子交换膜燃料电池的铂电催化剂稳定性的研究进展.重点关注了能够大幅改善铂催化剂电化学稳定性的策略,包括聚合物稳定策略、多孔碳封装/限域稳定策略以及载体稳定策略,并对这些铂催化剂稳定策略所面临的挑战进行了展望.
        The low service lifetime of proton exchange membrane fuel cells(PEMFCs) is the main bottleneck for their commercial applications.One of the main factors is that the expensive metal Pt catalyst is easy to degradation under the harsh working environment of PEMFC(such as variable voltage,strong acidity,gas-liquid two-phase flow),which leads to the inevitable decay of the catalytic performance,thus,seriously restricting the lifetime of PEMFC.Therefore,the electrochemical stability of Pt-based electrocatalysts has become an important and hot topic to improve the PEMFC lifetime.In this paper,we review the recent development in enhancing the stability of Pt electrocatalysts for PEMFC,mainly focusing on the achievements obtained by our group,especially,the polymer stabilization strategy,carbon encapsulation/confinement stabilization strategy,and support stabilization strategy.In addition,the challenges in these Pt catalyst stabilization strategies are summarized,and the corresponding measures and future research trends in facing these challenges are suggested.
引文
[1]Yi B L(衣宝廉).Fuel cells-principles,technologies and applications[M].Beijing:Chemical Industry Press(化学工业出版社),2003.
    [2]Wang H M(汪虹敏),Wei Z D(魏子栋).Development on stability of catalysts for proton exchange membrane fue cell[J].Chemistry Bulletin(化学通报),2014,77(1):3-10.
    [3]Qi L(戚利),Yin Y(殷瑛),Tu W G(涂文广),et al.Preparation of Pt-Ti O2/graphene composites with high catalytic activity towards methanol oxidation and oxygen reduction reaction[J].Journal of Electrochemistry(电化学),2014,20(4):377-381.
    [4]Carta M,Malpass-Evans R,Croad M,et al.An efficien polymer molecular sieve for membrane gas separations[J]Science,2013,339(6117):303-307.
    [5]He D P,Rong Y Y,Kou Z K,et al.Intrinsically microporous polymer slows down fuel cell catalyst corrosion[J]Electrochemistry Communication,2015,59:72-76.
    [6]He D P,Rong Y Y,Carta M,et al.Fuel cell anode catalys performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity(PIM)[J].RSCAdvances,2016,6(11):9315-9319.
    [7]Nam K W,Song J,Oh K H,et al.Perfluorosulfonic acid-functionalized Pt/graphene as a high-performance oxygen reduction reaction catalyst for proton exchange membrane fuel cells[J].Journal of Solid State Electrochemistry,2013,17(3):767-774.
    [8]Sarma L S,Lin T D,Tsai Y W,et al.Carbon supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methano fuel cells[J].Journal of Power Sources,2005,139(1/2):44-54.
    [9]Scibioh M A,Oh I H,Lim H T,et al.Investigation of various ionomer-coated carbon supports for direct methano fuel cell applications[J].Applied Catalysis B Environmental,2008,77(3/4):373-385.
    [10]Cheng K,Liu X B,Li W Q,et al,Enhancing the specific activity of metal catalysts toward oxygen reduction by introducing proton conductor[J].Nano,2016,11(5):1650055
    [11]Cheng K,Jiang M,Ye B,et al.Three-dimensionally costabilized metal catalysts toward an oxygen reduction reaction[J].Langmuir,2016,32(9):2236-2244.
    [12]Tian Z Q,Jiang S P,Liu Z C,et al.Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells[J].Electrochemistry Communications,2007,9(7):1613-1618.
    [13]Cheng N C,Mu S C,Pan M,et al.Improved lifetime of PEM fuel cell catalysts through polymer stabilization[J].Electrochemistry Communications,2009,11(8):1610-1614.
    [14]Yin S B,Mu S C,Lv H F,et al.A highly stable catalys for PEM fuel cell based on durable titanium diboride support and polymer stabilization[J].Applied Catalysis B Environmental,2010,93(3-4):233-240.
    [15]He D P,Mu S C,Pan M.Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells[J].Carbon,2011,49(1):82-88.
    [16]He D P,Cheng K,Li H G,et al.Highly active platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance[J].Langmuir,2012,28(8):3979-3986.
    [17]Curnick O J,Pollet B G,Mendes P M.NafionR-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells[J].Rsc Advances,2012,2(22):8368-8374.
    [18]Curnick O J,Mendes P M,Pollet B G.Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles[J].Electrochemistry Communications,2010,12(8):1017-1020.
    [19]Curnick O J,Mendes P,Pollet B.Morphological origins of the enhanced durability of a Pt/C electrocatalyst derived from NafionR-stabilized colloidal Pt nanoparticles[J].ECS Transactions,2010,33(1):557-561.
    [20]Zhu S,Wang S,Jiang L,et al.High Pt utilization catalyst prepared by ion exchange method for direct methanol fuel cells[J].International Journal of Hydrogen Energy,2012,37(19):14543-14548.
    [21]Oh H S,Kim K,Kim H.Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells[J].International Journal of Hydrogen Energy,2011,36(18):11564-11571.
    [22]Chen S G,Wei Z D,Qi X Q,et al.Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J].Journal of the American Chemical Society,2012,134(32):13252-13255.
    [23]Kaewsai D,Hunsom M.Comparative study of the ORRactivity and stability of Pt and Pt M(M=Ni,Co,Cr,Pd)supported on polyaniline/carbon nanotubes in a PEM fuel cell[J].Nanomaterials,2018,8(5):299.
    [24]He D P,Zen C,Xu C,et al.Polyaniline functionalized carbon nanotube supported platinum catalysts[J].Langmuir,2011,27(9):5582-5588.
    [25]Shi L,Liang R P,Qiu J D.Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes[J].Journal of Materials Chemistry,2012,22(33):17196-17203.
    [26]Ye B,Cheng K,Li W Q,et al.Polyaniline and perfluorosulfonic acid co-stabilized metal catalysts for oxygen reduction reaction[J].Langmuir,2017,33(22):5353-5361.
    [27]Nie Y,Chen S,Ding W,et al.Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalys for the oxygen reduction reaction[J].Chemical Communications,2014,50(97):15431-15434.
    [28]Cheng N C,Banis M N,Liu J,et al.Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J].Advanced Materials,2015,27(2):277-281.
    [29]Rong Y Y,He D P,Malpass-Evans R,et al.High-utilisation nanoplatinum catalyst(Pt@cPIM)obtained via vacuum carbonisation in a molecularly rigid polymer of intrinsic microporosity[J].Electrocatalysis,2017,8(2):132-143
    [30]Cheng K,Kou Z K,Zhang J,et al.Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction[J]Journal of Materials Chemistry A,2015,3(26):14007-14014.
    [31]Kou Z K,Cheng K,Wu H,et al.Observable electrochemical oxidation of carbon promoted by platinum nanoparticles[J].ACS Applied Materials&Interfaces,2016,8(6)3940-3947.
    [32]Cheng K,Zhu K,Liu S,et al.A spatially confined g C3N4-Pt electrocatalyst with robust stability[J].ACS Applied Materials&Interfaces,2018,10(25),21306-21312.
    [33]Xu F,Cheng K,Yu Y,et al.One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2electro-oxidation[J].Electrochimica Acta,2017,229(C):253-260.
    [34]Mu S C,Zhao P,Xu C,et al.Detaching behaviors of catalyst layers applied in PEM fuel cells by off-line accelerated test[J].International Journal of Hydrogen Energy,2010,35(15):8155-8160.
    [35]Mu S C,Chen X,Sun R H,et al.Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells[J].Carbon,2016130:449-456.
    [36]Lv H F,Mu S C,Cheng N C,et al.Nano silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon[J].Applied Catalysis B:Environmental,2010100(1):190-196.
    [37]Lv H F,Wu P,Wan W,et al.Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells[J].Journal of NanoscienceandNanotechnology,2014,14(9):7027-7031.
    [38]Cheng N C,Banis M N,Liu J,et al.Atomic scale enhancement of metal-support interactions between Pt and Zr C for highly stable electrocatalysts[J].Energy&Environmental Science,2015,8(5):1450-1455.
    [39]Xu F,Xu R,Mu S C.Enhanced CO and SO2-poisoning resistance for CeO2modified Pt/C catalysts applied in PEM fuel cells[J].Electrochimica Acta,2013,112(12):304-309.
    [40]Li H G,Cheng N C,Zheng Y,et al.Oxidation stability of nanographite materials[J].Advanced Energy Materials,2013,3(9):1176-1179.
    [41]Xu R,Xu F,Pan M,et al.Improving sulfur tolerance of noble metal catalysts by tungsten oxide-induced effects[J].RSC Advances,2013,3(3):764-773.
    [42]Cheng N C,Mu S C,Chen X J,et al.Enhanced lifetime of PEM Fuel cell catalysts using nafion functionalized carbon support[J].Electrochimica Acta,2011,56(5):2154-2159.
    [43]Lv H F,Peng T,Wu P,et al.Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance[J].Journal of Materials Chemistry,2012,22(18):9155-9160.
    [44]Cheng N C,Li H G,Li G Q,et al.Highly active Pt@Au nanoparticles encapsulated with perfluorosulfonic acid for the reduction of oxygen[J].Chemical Communications,2011,47(48):12792-12794.
    [45]Yin S B,Mu S C,Pan M,et al.A highly stable Ti B2supported Pt electrocatalysts applied in PEM fuel cells[J].Journal of Power Sources,2011,196(19):7931-7936.
    [46]Xu F,Wang D Q,Sa B S,et al.One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC[J].International Journal of Hydrogen Energy,2017,42(18):13011-13019.
    [47]He D P,Mu S C,Pan M.Improved carbon nanotube supported Pt nanocatalyts with lyophilization method[J].International Journal of Hydrogen Energy,2012,37:4699-4703.
    [48]Lv H F,Cheng N C,Mu S C,et al.Heat-treated multi-walled carbon nanotubes as durable supports for PEMfuel cell catalysts[J].Electrochimica Acta,2011,58(5):736-742.
    [49]Li H G,Zhang X,He D P,et al.Carbon-embedded carbon nanotubes as supports of polymer electrolyte membrane fuel cell catalysts[J].Journal of Nanoscience and Nanotechnology,2014,14(6):6929-6933.
    [50]Yin S B,Luo L,Qiang Y H,et al.Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method[J].Journal of Power Sources,2012,198(1):1-6.
    [51]Cheng K,He D P,Peng T,et al.Porous graphene supported Pt catalysts for p roton exchange membrane fuel cells[J].Electrochimica Acta,2014,132(3):356-363.
    [52]He D P,Jiang Y L,Pan M,et al.Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J].Applied Catalysis B:Environmental,2013,132:379-388.
    [53]He D P,Cheng K,Peng T,et al.Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkable high activity and stability[J]Journal of Materials Chemistry A,2013,1(6):2126-2132.
    [54]He D P,Cheng K,Peng T,et al.Bifunctional effect of reduced graphene oxides to support active meta nanoparticles for oxygen reduction reaction and stability[J].Journal of Materials Chemistry,2012,22(39):21298-21304.
    [55]He D P,Tang H L,Kou Z K,et al.Engineered graphene materials:synthesis and applications for polymer electrolyte membrane fuel cells[J].Advanced Materials,201729(20):1601741.
    [56]He D P,Cheng K,Xiong Y L,et al.Simultaneously sulfonated and reduced graphene oxide as highly efficien supports for metal nanocatalysts[J].Carbon,2014,66(2)312-319.
    [57]Wu H,Peng T,Kou Z K,et al.Core-shell graphene@amorphous carbon composites supported platinum catalysts towards oxygen reduction reaction[J].Chinese Journal of Catalysis,2015,36(4):490-495.
    [58]Wu H,Peng T,Kou Z K,et al.Constructing ultrastable ceramic@graphene core-shell architectures by an in situ synthesis strategy as advanced metal catalyst supports towards oxygen reduction[J].Journal of Energy Chemistry,2017,26(6):1160-1167.
    [59]Chen X,He D P,Wu H,et al.Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells[J].Scientific Reports,2015,5:16246.
    [60]Lv H F,Mu S C.Nano-ceramic support materials for low temperature fuel cell catalysts[J].Nanoscale,2014,6(10):5063-5074.
    [61]Wu P,Lv H F,Peng T,et al.Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction[J].Scientific Reports,2014,4(2):3968.
    [62]Lv H F,Cheng N C,Peng T.High stability platinum electrocatalysts with zirconia-carbon hybrid supports[J].Journal of Materials Chemistry,2012,22(3):1135-1141.
    [63]Shao Y,Sui J,Yin G,et al.Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J].Applied Catalysis B:Environmental,2008,79(1):89-99.
    [64]Wei D,Liu Y,Wang Y,et al.Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J].Nano Letters,2009,9(5):1752-1758.
    [65]Zhou C,Kong J,Yenilmez E,et al.Modulated chemical doping of individual carbon nanotubes[J].Science,2000,290(5496):1552-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700