用户名: 密码: 验证码:
燃煤烟气污染物控制装置协同脱汞特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of the existing air pollutant control devices on Hg synergistic removal in a coal-fired power plant
  • 作者:郑逸武 ; 段钰锋 ; 汤红健 ; 李春峰 ; 柳帅 ; 陈明明
  • 英文作者:ZHENG Yi-wu;DUAN Yu-feng;TANG Hong-jian;LI Chun-feng;LIU Shuai;CHEN Ming-ming;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,School of Energy and Environment,Southeast University;
  • 关键词:燃煤烟气 ; 污染物控制装置 ; 汞形态 ; 脱除特性 ; 汞再释放
  • 英文关键词:flue gas;;air pollution control devices;;mercury species;;removal characteristics;;mercury re-emission
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室;
  • 出版日期:2018-03-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划(2016YFC0201105);; 国家自然科学基金项目(51576044);; 江苏省环保科研课题资助(2016030)
  • 语种:中文;
  • 页:ZGHJ201803009
  • 页数:9
  • CN:03
  • ISSN:11-2201/X
  • 分类号:64-72
摘要
采用Ontario Hydro方法对某100MW燃煤机组进行了烟气汞取样测试,获得了选择性催化还原(SCR)脱硝装置、静电除尘器(ESP)和湿法烟气脱硫装置(WFGD)对烟气汞形态转化和脱除特性规律.借助程序升温脱附(TPD)、扫描电子显微镜分析(SEM)和X射线荧光光谱分析(XRF)等方法探究了飞灰对汞的吸附特性及吸附后汞的热稳定性.结果表明,在75%MCR和85%MCR不同的机组负荷下,SCR+ESP+WFGD对烟气总汞(Hg~T)的联合脱除率分别为92.83%、81.66%.SCR对元素汞(Hg~0)的氧化率与燃煤氯(Cl)含量正相关,Cl含量为500mg/kg时,氧化率高达96.18%.ESP在完全脱除颗粒汞(Hg~P)的同时对Hg~0和氧化态汞(Hg~(2+))的平均脱除率分别为12.73%和27.79%,ESP飞灰中的未燃尽炭和金属氧化物(Al_2O_3、Fe_2O_3)是吸附气态汞的关键组分,汞在飞灰表面主要以Hg Cl_2、Hg S(红色)和Hg O的形态存在,高于190℃时会分解再释放.WFGD对Hg~(2+)的平均脱除率为91.10%,并能将部分Hg~(2+)还原成Hg~0,存在明显的汞二次释放问题.
        The Ontario Hydro Method(OHM)was applied to determine the mercury speciation and concentration in the flue gas emitted from a 100MW boiler system.Mercury speciation transformation and removal characteristics of selective catalytic reduction(SCR)system,electrostatic precipitators(ESP)and wet flue gas desulfurization(WFGD)had been obtained.Temperature programmed decomposition(TPD),Scanning electron microscope(SEM)and X ray fluorescence(XRF)were used to investigate the adsorption characteristic of mercury by fly ashes and thermal stability after adsorption.The results show that the overall mercury(Hg~T)removal efficiencies over SCR+ESP+WFGD combination were92.83%and 81.66%under 75%MCR and 85%MCR,respectively.The oxidation of element mercury(Hg~0)by SCR catalyst was greatly promoted by the chlorine(Cl)content in coal and 96.18%Hg~0was oxidized to oxidized mercury(Hg~(2+))by SCR when the Cl concentration in burned-coal contained 500mg/kg.Hg~P could be effectively removed by ESP,removal efficiencies with 12.73%of Hg~0 and 27.79%of Hg~(2+)were observed.Unburned carbon and metal oxides(Al_2O_3,Fe_2O_3)were the main components of ESP fly ash to adsorb gaseous mercury.Hg Cl_2,Hg S(red),and Hg O were the main mercury compounds in the ash after adsorption which would decompose when the temperature reached 190 degrees.The average removal efficiencies of Hg~(2+)by WFGD were 91.10%.Meanwhile,the phenomenon of mercury re-emission due to part of Hg~(2+)was reduced to Hg~0 in WFGD was found.
引文
[1]Wang S,Zhang L,Zhao B,et al.Mitigation potential of mercury emissions from coal-fired power plants in China[J].Energy Fuels,2012,26:4635-42.
    [2]United Nations Environment Programme(UNEP)Chemicals.Global Mercury Assessment[M].Geneva,Switzerland,2002.
    [3]Environmental Protection Agency.National emission standards for hazardous air pollutants from coaland oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electricutility,industrial commercial institutional,and small industrial commercial institutional steam generating units[S].Washington,D.C:U.S.EPA,2013.
    [4]GB 13223-2011火电厂大气污染物排放标准[S].
    [5]DB11/139-2015锅炉大气污染物排放标准[S].
    [6]Galbreath K C,Zygarlicke C J.Mercury transformations in coal combustion flue gas[J].Fuel Process Technol,2000,65-66:289-310.
    [7]Tang H,Duan Y,Zhu C,et al.Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury[J].Chemosphere,2017,184:711.
    [8]朱法华,王临清.煤电超低排放的技术经济与环境效益分析[J].环境保护,2014,21:28-33.
    [9]支国瑞,薛志钢,李洋,等.基于国内实测燃煤电厂烟气汞排放估算的不确定度[J].环境科学研究,2013,26(8):814-821.
    [10]Wang S X,Zhang L,Li G H,et al.Mercury emission and speciation of coal-fired power plants in China[J].Atmospheric Chemistry&Physics Discussions,2010,10(3):1183-1192.
    [11]Tang H,Duan Y,Zhu C,et al.Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring[J].International Journal of Coal Geology,2017,170:19-27.
    [12]Zhang Y,Yang J P,Yu X H,et al.Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J].Fuel Processing Technology,2017,158:272-280.
    [13]段钰锋,江贻满,杨立国,等.循环流化床锅炉汞排放和吸附实验研究[J].中国电机工程学报,2008,28(32):1-5.
    [14]杨立国.燃煤烟气汞形态转化及脱除机理研究[D].南京:东南大学,2008.
    [15]Tang N,Pan S W.Study on mercury emission and migration from large-scale pulverized coal fired boilers[J].Journal of Fuel Chemistry&Technology,2013,41(4):484-490.
    [16]Belkin H E,Finkelman R B,Zheng B.Mercury in People`s Republic of China coal[J].The Geological Society of America Abstract,2005,37(7):48.
    [17]姜英.我国煤中氯的分布及其分级标准[J].煤质技术,1998,(5):7-8.
    [18]Yokoyama T,Asakura k,Mastude H,et al.Mercury emissions from a coal-fired power plant in Japan[J].The Science of the Total Environment,2000,259(1-3):97-103.
    [19]Zhao S,Duan Y,Yao T,et al.Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J].Fuel,2017,199:653-661.
    [20]Zhang L,Zhuo Y,Chen L,et al.Mercury emissions from six coal-fired power plants in China[J].Fuel Process Technol,2008,89(11):1033-1040.
    [21]Pudasainee D,Kim J H,Yoon Y S,et al.Oxidation,reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR,CS-ESP and wet FGD[J].Fuel,93(2012):312-318.
    [22]巴蓓.燃煤飞灰热处理过程中汞的释放特征及机理分析[D].广州:华南理工大学,2012.
    [23]Bhardwaj R,Chen X H,Vidic R D.Impact of fly ash composition on mercury speciation in simulated flue gas[J].Air Waste Management Association,2009,59:1331-1338.
    [24]Wang F Y,Wang S X,Meng Y,et al.Mechanisms and roles of fly ash composition on the adsorption and oxidation of mercury in flue gas from coal combustion[J].Fuel,2016,163:232-239.
    [25]Lee C W,Kilgroe J D,Ghorishi S B.Mercury control research:Effects of fly ash and flue gas parameters on mercury speciation[J].Fuel&Energy Abstracts,1998,43(1):70-71.
    [26]Lopze-antona M A,Perry R,Abad-valle P,et al.Speciation of mercury in fly ashes by temperature programmed decomposition[J].Fuel Processing Technology,2011,92(3):707-711.
    [27]周强.改性吸附剂喷射脱汞的实验及机理研究[D].南京:东南大学,2016.
    [28]Chang J C,Ghorish S B.Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber[J].Environ Sci Technol,2003,37(24):5763-5766.
    [29]李志超,段钰锋,王运军,等.300MW燃煤电厂ESP和WFGD对烟气汞的脱除特性[J].燃料化学学报,2013,41(4):491-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700