用户名: 密码: 验证码:
热特性对含储热电–热联供系统的综合调度影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Thermal Characteristics on the Synthetic Scheduling of an Integrated Heat and Power Supply System With Heat Storage
  • 作者:郝俊红 ; 陈群 ; 葛维春 ; 陈磊 ; 徐飞 ; 闵勇
  • 英文作者:HAO Junhong;CHEN Qun;GE Weichun;CHEN Lei;XU Fei;MIN Yong;Tsinghua University;State Grid Liaoning Electric Power Supply Company;
  • 关键词:储热 ; 能量流 ; 热特性 ; 运行成本 ; 风电消纳
  • 英文关键词:heat storage;;power flow;;thermal characteristic;;operation cost;;wind power accommodation
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:清华大学;国网辽宁省电力有限公司;
  • 出版日期:2019-05-05 09:47
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.620
  • 基金:国家重点研发计划项目(2017YFB0902100)~~
  • 语种:中文;
  • 页:ZGDC201909019
  • 页数:9
  • CN:09
  • ISSN:11-2107/TM
  • 分类号:187-195
摘要
储热装置的热特性分析是实现电?热联供系统中电、热综合调度的关键之一。针对含储热的电?热联供系统,应用能量流法构建包含储热、传热和漏热过程在内的系统整体能量流模型,获得系统中电能、热能的整体传输约束。并且,以最小化系统总运行成本为优化目标,分析储热装置热特性对运行成本和风电消纳的影响。结果表明:增强储热性能(储热介质最高温度或装置总体积)、传热性能(循环水最大质量流量、换热器面积)和隔热性能(隔热材料厚度),均可不同程度地促进风电消纳,降低总运行成本。其中,增加储热介质的温度上限和传热装置的总体积可使循环水的平均质量流量分别降低15.3%和17.4%,并且存在最佳的换热器面积和循环水流量上限使得总运行成本最低,可为制定含储热电?热联供系统的综合调度方案提供依据。
        Analysis of the influence of thermal characteristics on the integrated heat and power supply system is significant for the systematic scheduling and improving the wind power accommodation. This paper first established the equivalent circuits of the heat storage, heat transfer and heat loss processes, respectively in the integrated heat and power supply system with a heat storage(HS) device by applying the newly proposed power flow method and obtains the overall power transport law. With the consideration of electricity transmission and heat transfer constraints simultaneously,this paper minimized the total operation cost of thermal power and CHP plants, and analyzed the influences of heat storage, transfer and loss characteristics on the total operation cost and wind energy accommodation. The results show that enhancing the heat storage capacity(enlarging the maximum temperature or the total water volume) of the HS device, heat transfer performance(the mass flow rate ceiling of the circulating water or heat exchanger area) and the insulation performance(insulation material thickness) will improve the wind power accommodation and moreover decrease the system total operation cost. Wherein, increasing the temperature ceiling and total volume will decrease the average mass flow rate of the circulating water 15.3 % and 17.4%, respectively. In addition, we obtain the optimal heat conductance and mass flow rate ceiling for the minimum of the total operation cost that will provide the significant basis for the general dispatching of integrated heat and power supply system with heat storage.
引文
[1]Liu Zhu,Guan Dabo,Crawford-Brown D,et al.Energy policy:A low-carbon road map for China[J].Nature,2013,500(7461):143-145.
    [2]Rezaie B,Reddy B V,Rosen M A.Exergy analysis of thermal energy storage in a district energy application[J].Renewable Energy,2015,74:848-854.
    [3]中国可再生能源学会风能专业委员会.2015年中国风电装机容量统计[J].风能,2016(2):48-63.Chinese Wind Energy Association.Wind power installed capacity statistics in China[J].Wind Energy,2016(2):48-63(in Chinese).
    [4]张玥.2011年-2015年中国弃风数据统计[J].风能,2016(2):34-35.Zhang Yue,Data statistics of wind curtailment in China2011-2015[J].Wind Energy,2016(2):34-35(in Chinese).
    [5]Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Power-electronic systems for the grid integration of renewable energy sources:A survey[J].IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [6]Yang Zhenguo,Zhang Jianlu,Kintner-Meyer C W,et al.Electrochemical energy storage for green grid[J].Chemical Reviews,2011,111(5):3577-3613.
    [7]Pasta M,Wessells C D,Huggins R A,et al.A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage[J].Nature Communications,2012,3:1149.
    [8]Larcher D,Tarascon J M.Towards greener and more sustainable batteries for electrical energy storage[J].Nature Chemistry,2015,7(1):19-29.
    [9]Kuravi S,Trahan J,Goswami D Y,et al.Thermal energy storage technologies and systems for concentrating solar power plants[J].Progress in Energy and Combustion Science,2013,39(4):285-319.
    [10]Diaz-González F,Sumper A,Gomis-Bellmunt O,et al.Areview of energy storage technologies for wind power applications[J].Renewable and Sustainable Energy Reviews,2012,16(4):2154-2171.
    [11]Liu Wen,Lund H,Mathiesen B V.Large-scale integration of wind power into the existing Chinese energy system[J].Energy,2011,36(8):4753-4760.
    [12]李正茂,张峰,梁军,等.含电热联合系统的微电网运行优化[J].中国电机工程学报,2015,35(14):3569-3576.Li Zhengmao,Zhang Feng,Liang Jun,et al.Optimization on microgrid with combined heat and power system[J].Proceedings of the CSEE,2015,35(14):3569-3576(in Chinese).
    [13]陈群,郝俊红,陈磊,等.电-热综合能源系统中能量的整体输运模型[J].电力系统自动化,2017,41(13):7-13,69.Chen Qun,Hao Junhong,Chen Lei,et al.Integral transport model for energy of electric-thermal integrated energy system[J].Automation of Electric Power Systems,2017,41(13):7-13,69(in Chinese).
    [14]徐飞,闵勇,陈磊,等.包含大容量储热的电-热联合系统[J].中国电机工程学报,2014,34(29):5063-5072.Xu Fei,Min Yong,Chen Lei,et al.Combined electricity-heat operation system containing large capacity thermal energy storage[J].Proceedings of the CSEE,2014,34(29):5063-5072(in Chinese).
    [15]孙宏斌,潘昭光,郭庆来.多能流能量管理研究:挑战与展望[J].电力系统自动化,2016,40(15):1-8,16.Sun Hongbin,Pan Zhaoguang,Guo Qinglai.Energy management for multi-energy flow:challenges and prospects[J].Automation of Electric Power Systems,2016,40(15):1-8,16(in Chinese).
    [16]Laing D,Steinmann W D,Tamme R,et al.Solid media thermal storage for parabolic trough power plants[J].Solar Energy,2006,80(10):1283-1289.
    [17]Sharma A,Tyagi V V,Chen C R,et al.Review on thermal energy storage with phase change materials and applications[J].Renewable and Sustainable Energy Reviews,2009,13(2):318-345.
    [18]Morisson V,Rady M,Palomo E,et al.Thermal energy storage systems for electricity production using solar energy direct steam generation technology[J].Chemical Engineering and Processing:Process Intensification,2008,47(3):499-507.
    [19]Jian Yongfang,Falcoz Q,Neveu P,et al.Design and optimization of solid thermal energy storage modules for solar thermal power plant applications[J].Applied Energy,2015,139:30-42.
    [20]Rodríguez I,Pérez-Segarra C D,Oliva A,et al.Numerical study of the transient cooling process of water storage tanks under heat losses to the environment[J].Numerical Heat Transfer,Part A:Applications,2009,55(12):1051-1074.
    [21]Suárez C,Iranzo A,Pino F J,et al.Transient analysis of the cooling process of molten salt thermal storage tanks due to standby heat loss[J].Applied Energy,2015,142:56-65.
    [22]Verda V,Colella F.Primary energy savings through thermal storage in district heating networks[J].Energy,2011,36(7):4278-4286.
    [23]Chen Xinyu,Kang Chongqing,O’Malley M,et al.increasing the flexibility of combined heat and power for wind power integration in China:modeling and implications[J].IEEE Transactions on Power Systems,2015,30(4):1848-1857.
    [24]邓佳乐,胡林献,李佳佳.采用二级热网电锅炉调峰的消纳弃风机理及经济性分析[J].电力系统自动化,2016,40(18):41-47.Deng Jiale,Hu Linxian,Li Jiajia.Analysis on mechanism of curtailed wind power accommodation and its economic operation based on electric boiler for peak-load regulation at secondary heat supply network[J].Automation of Electric Power Systems,2016,40(18):41-47(in Chinese).
    [25]Ba?os R,Manzano-Agugliaro F,Montoya F,et al.Optimization methods applied to renewable and sustainable energy:A review[J].Renewable and Sustainable Energy Reviews,2011,15(4):1753-1766.
    [26]Rong A,Lahdelma R,Luh P B.Lagrangian relaxation based algorithm for trigeneration planning with storages[J].European Journal of Operational Research,2008,188(1):240-257.
    [27]Wang Xiaonan,Palazoglu A,El-Farra N H.Operational optimization and demand response of hybrid renewable energy systems[J].Applied Energy,2015,143:324-335.
    [28]Xu Xiandong,Jin Xiaolong,Jia Hongjie,et al.Hierarchical management for integrated community energy systems[J].Applied Energy,2015,160:231-243.
    [29]Yuan Rongxiang,Ye Jun,Lei Jiazhi,et al.Integrated combined heat and power system dispatch considering electrical and thermal energy storage[J].Energies,2016,9(6):474.
    [30]吕泉,陈天佑,王海霞,等.含储热的电力系统电热综合调度模型[J].电力自动化设备,2014,34(5):79-85.LüQuan,Chen Tianyou,Wang Haixia,et al.Combined heat and power dispatch model for power system with heat accumulator[J].Electric Power Automation Equipment,2014,34(5):79-85(in Chinese).
    [31]Guo Zengyuan,Liu Xiongbing,Tao Wenquan,et al.Effectiveness-thermal resistance method for heat exchanger design and analysis[J].International Journal of Heat and Mass Transfer,2010,53(13-14):2877-2884.
    [32]Chen Qun.Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization[J].International Journal of Heat and Mass Transfer,2013,60:156-162.
    [33]Chen Qun,Fu Ronghuan,Xu Yunchao.Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks[J].Applied Energy,2015,139:81-92.
    [34]Chen Qun,Hao Junhong,Zhao Tian.An alternative energy flow model for analysis and optimization of heat transfer systems[J].International Journal of Heat and Mass Transfer,2017,108:712-720.
    [35]Li Zhigang,Wu Wenchuan,Shahidehpour M,et al.Combined heat and power dispatch considering pipeline energy storage of district heating network[J].IEEE Transactions on Sustainable Energy,2016,7(1):12-22.
    [36]Dai Yuanhang,Chen Lei,Min Yong,et al.Active and passive thermal energy storage in combined heat and power plants to promote wind power accommodation[J].Journal of Energy Engineering,2017,143(5):04017037,doi:10.1061/(ASCE)EY.1943-7897.0000451.
    [37]Gou Xing,Chen Qun,Hu Kang,et al.Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems[J].Energy,2018,160:763-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700