用户名: 密码: 验证码:
蛋白质互作技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advances on protein interaction technology
  • 作者:卢艳艳 ; 王超 ; 侍福梅
  • 英文作者:LU Yan-yan;WANG Chao;SHI Fu-mei;School of Life Science,Liaocheng University;Experiment Teaching and Network Information Management Center,Liaocheng University;
  • 关键词:蛋白质 ; 生物信息 ; 蛋白质互作
  • 英文关键词:protein;;bioinformatics;;protein interaction
  • 中文刊名:HBNY
  • 英文刊名:Hubei Agricultural Sciences
  • 机构:聊城大学生命科学学院;聊城大学实验与网络信息中心;
  • 出版日期:2019-06-25
  • 出版单位:湖北农业科学
  • 年:2019
  • 期:v.58;No.633
  • 基金:国家自然科学基金项目(31240035);; 山东省自然科学基金项目(ZR2010CQ002)
  • 语种:中文;
  • 页:HBNY201912001
  • 页数:7
  • CN:12
  • ISSN:42-1255/S
  • 分类号:7-12+23
摘要
蛋白质作为细胞活性及功能的执行者,以复杂有序的动态互作协调着细胞的增殖与分化、衰老与死亡以及环境应答等各种重要生理过程。重点介绍了酵母双杂交系统、双分子荧光互补、噬菌体展示技术、荧光共振能量转移技术、谷胱甘肽巯基转移酶融合蛋白沉降技术、免疫共沉淀技术等蛋白质互作研究技术的原理及在生物学中的应用,以及生物信息学在蛋白质互作研究中的应用,并对目前及未来蛋白质互作技术的发展方向进行了探讨。
        Proteins,the true executer of cell activities and functions, play important roles in the proliferation, differentiation,aging and death, and environmental response via complex and highly ordered dynamic interaction. The basic principles and applications of several related research techniques in protein-protein interactions, including yeast two-hybrid system, bimolecular fluorescence complementation assay, phage display technology, fluoresence energy transfer, GST Pull-down, co-immunoprecipitation, and bioinformatics in protein interaction research applications, and their development prospects were also prospected.
引文
[1] WU B,LI Z Y,YANG S C,et al. Regulation of apoptosis signaling pathway by common heat shock proteins[J].Chin J Biochem Mol Biol,2011,27(1):22-31.
    [2] YANG X X,WANG K,CHEN X J,et al. Function and regulation of MAVS,the mitochondrial antiviral signaling protein in innate immunity[J].Prog Biochem Biophys,2013,40(5):397-405.
    [3] RUDOLPH R,LILIE H. In vitro folding of inclusion body proteins[J].FASEB J,1996,10(1):49-56.
    [4] MITRA K,FRANK J. Ribosome dynamics:Insights from atomic structure modeling into cryo-electron microscopy maps[J].Annu Rev Biophys Biomol Struct,2006,35(1):299-317.
    [5] CHAPMAN E,FARR G W,USAITE R,et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL[J].Proc Natl Acad Sci,2006,103(43):15800-15805.
    [6] CHEVALIER D,WALKER J C. Functional genomics of protein kinases in plants[J].Brief Funct Genomic Proteomic,2005,3(4):362-371.
    [7] DHAR-CHOWDHURY P,HARRELL M D,HAN S Y,et al.The glycolytic enzymes,glyceraldehyde-3-phosphate dehydrogenase,triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP)channel macromolecular complex and regulate its function[J].J Biol Chem,2005,280(46):38464-38470.
    [8] FIELDS S,SONG O. A novel genetic system to detect proteinprotein interactions[J].Nature,1989,340(6230):245-256.
    [9] KEEGAN L,GILL G,PTASHNE M. Separation of DNA bind from the transcription-activating function of eukaryotic regulatory protein[J].Science,1986,231(4739):699-704.
    [10] MA J,PTASHNE M. A new class of yeast transcriptional activators[J].Cell,1987,51(1):113-119.
    [11] FIELDS S,STERNGLANZ R. The two-hybrid system:An assay for protein-protein interactions[J].Trends Genet,1994,10(8):286-292.
    [12]杨齐衡,李林.酵母双杂交技术及其在蛋白质组研究中的应用[J].生物化学与生物物理学报,1999,31(3):221-225.
    [13]李明智,赵金会,刘勋成,等.利用酵母双杂交系统筛选水稻组蛋白去乙酰化酶HDA705的互作蛋白[J].热带亚热带植物学报,2015,23(1):43-50.
    [14] SILVA J V,FREITAS M J,FELGUEIRAS J,et al. The power of the yeast two-hybrid system in the identification of novel drug targets:Building and modulating PPP1 interactomes[J].Expert Rev Proteomics,2015,12(2):147.
    [15]陈泽良,高婷,张部昌,等.应用酵母双杂交技术筛选与埃博拉病毒VP24、VP35、VP40蛋白相互作用的宿主蛋白[J].生物技术通讯,2016,27(3):308-313.
    [16]俞孔坚,李迪华.《景观设计:专业学科与教育》导读[J].中国园林,2004, 20(5):7-8.
    [17] KOEGL M,UETZ P. Improving yeast two-hybrid screening systems[J].Brief Funct Genomic Proteomic,2007,6(4):302-312.
    [18]赵静,王宏伟,田二杰,等.蛋白质组学实验技术及其应用[J].动物医学进展,2015,36(1):116-120.
    [19] HU C D,CHINENOV Y,KERPPOLA T K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation[J].Mol Cell,2002,9(4):789-798.
    [20] GHOSH I,HAMILTON A D,REGAN L. Antiparallel leucine zipper-directed protein reassembly:Application to the green fluorescent protein[J].Am Chem Soc,2000,122:5658-5659.
    [21]曹建美.双分子荧光互补技术(Bi FC)分析玉米MAPK5与bZIP72蛋白的相互作用[J].安徽农业科学,2016,44(14):152-154,161.
    [22]刘文晓,闫朝君,宋质银.双分子荧光互补法(Bi FC)精确MICOS复合物精细结构[J].安徽农业大学学报,2017,44(4):690-694.
    [23] CHEN M H,LI W,ZHANG Z,et al. Novel near-infrared BiFC systems from a bacterial phytoch rome for imaging protein interactions and drug evaluation under physiological conditions[J].Biomaterials,2015,48:97-107.
    [24] NAGAI T,SAWANO A,PARK E S,et al. Circularly permuted green fluorescent proteins engineered to sense Ca2+[J].Proc Natl Acad Sci,2001,98(6):3197-202.
    [25] MATZ M V,FRADKOV A F,LABAS Y A,et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J].Nat Biotechnol,1999,17(10):969-973.
    [26] KERPPOLA T K. Bimolecular fluorescence complementation(BiFC)analysis as a probe of protein interactions in living cells[J].Annu Rev Biophys,2008,37(37):465-487.
    [27] KERPPOLA T K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis:Characteristics of protein fragment complementation[J].Chem Soc Rev,2009,40(50):2876-2886.
    [28] SMITH G P. Filamentous fusion phage:Novel expression vectors that display cloned antigens on the virion surface[J].Science,1985,228(4705):1315-1317.
    [29] EBRAHIMIZADEH W,RAJABIBAZL M. Bacteriophage vehicles for phage display:Biology mechanism and application[J].Curr Microbiol,2014,69(2):109-120.
    [30] MEHR K S,MOUSAVI S L,RASOOLI I,et al.A DNA vaccine against Escherichia coli O157:H7[J].Iran Biomed J,2012,16(3):133-139.
    [31] WANG L F,YU M. Epitope identification and discovery using phage display libraries:Applications in vaccine development and diagnostics[J].Curr Drug Target,2004,5(1):1-15.
    [32]高凯丽,李维娜,薛晓畅,等.T7噬菌体展示人肝癌cDNA文库筛选人CD8~+T淋巴细胞特异结合分子[J].生物技术通讯,2017,28(3):333-337.
    [33] KUHN P,FUHNER V,UNKAUF T,et al. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display[J].Proteomics clinical applications, 2016,10(9-10):922-948.
    [34]唐瑞,杨勇波.噬菌体展示技术筛选人肠道病毒71型3A蛋白相互作用蛋白[J].国际检验医学杂志,2014,35(16):2129-2131.
    [35] ALBAN S M,DE MOURA J F,THOMAZ-SOCCOL V,et al.Phage display and synthetic peptides as promising biotechnological tools for the serological diagnosis of leprosy[J].PLoS One,2014,9(8):e106222.
    [36] F魻RSTER T. Intramolecular energy migration and fluorescence[J].Ann Phys,1948,2:55-75.
    [37] PRASHER D C,ECKENRODE V K,WARD W W,et al. Primary structure of the Aequorea victoria green fluorescent protein[J].Gene,1992,111(2):229-233.
    [38] GHISAIDOOBE A B,CHUNG S J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins:A focus on F觟rster resonance energy transfer techniques[J].Int J Mol Sci,2014,15(12):22518-22538.
    [39]曹薇薇,刘伟,王维山,等.利用荧光共振能量转移技术研究TGF-β/Smad3信号转导通路[J].生物医学工程学杂志,2014,31(5):1080-1084.
    [40] MIZUTANI T,KONDO T,DARMANIN S,et al. A novel FRETbased biosensor for the measurement of BCR-ABL activity and its response to drugs in living cell[J].Clin Cancer Res,2010,16(15):3964-3975.
    [41] NOBIS M,MCGHEE E J,MORTON J P,et al. Intravital FLIMFRET imaging reveals dasatinib-induced spatial control of src inpancreatic cancer[J].Cancer Res,2013,73(15):4674-4686.
    [42] KUMAGAI Y,NAOKI H,NAKASYO E,et al. Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice[J].Oncogene,2015,34(8):1051-1057.
    [43] WABUYELE M B,FARQUAR H,STRYJEWSKI W,et al. Approaching real-time molecular diagnostics:Single-pair fluorescence resonance energy transfer(spFRET)detection for the analysis of low abundant point mutations in K-ras oncogenes[J].Journal of the american chemical society,2003,125(23):6937-6945.
    [44] CHRISTIAN T D,ROMANO L. Monitoring the conformation of benzo[a]pyrene adducts in the polymerase active site using fluorescence resonance energy transfer[J].Biochemistry,2009,48(23):5382-5388.
    [45] DAI Y,YANG D,MA P,et al. Doxorubicin conjugated NaYF(4):Yb(3+)/Tm(3+)nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer[J].Biomaterials,2012,33(33):8704-8713.
    [46] SAVLA R,TARATULA O,GARBUZENKO O,et al. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer[J].Journal of controlled releease,2011,153(1):16-22.
    [47] SMITH D B,JOHNSON K S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase[J].Gene,1988,67(1):31-40.
    [48] WISSMUELLER S,FONT J,LIEW C W,et al. Protein-protein interactions:Analysis of a false positive GST pulldown result[J].Proteins:strcture,function bioinformatics,2011,79(8):2365-2371.
    [49]朱彤,龚清秋,刘新奇.拟南芥富天冬酰胺蛋白NRP与PP6型磷酸酶FyPP3具有相互作用[J].南开大学学报(自然科学版),2017,50(2):102-107.
    [50] LUO L,KING N P,YEO J C,et al. Single-step protease cleavage elution for identification of protein-protein interactions from GST pull-down and mass spectrometry[J].Protemics,2014,14(1):19-23.
    [51] TRAN D H,SHISHIDO Y,CHUNG S P,et al. Identification of DNA-binding proteins that interact with the 5′-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry[J].J Pharm Biomed Anal,2015,116:94-100.
    [52]杨亮,杨细飞,张毅,等.利用免疫共沉淀技术验证SET与e EF1A1在人肝细胞内的相互作用[J].安徽农业科学,2010,38(35):19946-19948.
    [53] SKIETERSKA K,DUCHOU J,LINTERMANS B,et al. Chapter17-detection of G protein-coupled receptor(GPCR)dimerization by coimmunoprecipitation[J].Methods Cell Biol,2013,117:323-340.
    [54]孙婷婷,宋丽娜,于淼,等.免疫共沉淀联合质谱对肝细胞核因子3β蛋白复合体的分离鉴定[J].生物技术通讯,2011,22(5):662-666.
    [55] EDMONDSON D G,DENT S Y. Identifi cation of protein interactions by far western analysis[J].Curr Protoc Protein Sci,2001,2:1-10.
    [56]苏婧,杨静,张松,等.用Far-Western印迹技术筛选人肝组织中与乙肝病毒表面抗原PreS1相互作用的蛋白[J].生物技术通讯,2010,21(3):355-358.
    [57] LI Q,LIU H,DU D,et al. Identification of novel laminin-and fibronectin-binding proteins by Far-Western blot:Capturing the adhesins of Streptococcus suis Type 2[J].Frontiers in cellular&infection microbiology,2015,5:82.
    [58] MACHIDA K,MAYER B J. Detection of protein-protein interactions by far-western blotting[J].Methods Mol Biol,2009,536:313-329.
    [59] LV S,MIAO H,LUO M,et al. CAPPI:A Cytoskeleton-based localization assay reports protein-protein interaction in living cells by fluorescence microscopy[J].Molecular plant,2017,10(11):1473-1476.
    [60]吴旻.生物信息学的发展[J].中国科学院院刊,1998,13(3):183-186.
    [61]张凤.蛋白质组学核心技术研究综述[J].延安职业技术学院学报,2014(5):137-139.
    [62]姜鑫.生物信息学数据库及其利用方法[J].现代情报,2005,25(6):185-187.
    [63]凌梦婷,宫君原,李君武,等.LTQ-FT-MS技术结合生物信息学筛选与HBV Polymerase存在潜在相互作用的宿主蛋白[J].病毒学报,2014,30(6):636-644.
    [64] YAU Y H,SHOCHAT S G. Analysis of affinity of dengue virus protein interaction using biacore[J].Methods in molecular biology,2014,1138:271-284.
    [65]葛金涛,王丽丽,赵统利,等.葡萄miR159家族生物信息学分析及靶基因预测分析[J].江西农业学报,2018,30(2):21-25.
    [66]李汉成,李婵,周玉婷,等.微小RNA-181a-5p在甲基苯丙胺依赖大鼠血清外泌体中的表达及生物信息学分析[J].中国临床药理学杂志,2018(1):45-48.
    [67]路东晔,贺玉娇,金娜,等.沙柳SpsLAS基因克隆及生物信息学分析[J].分子植物育种,2017,15(2):483-491.
    [68] SIRDESHMUKH R. Indian proteomics efforts and human proteome project[J].J Proteomics,2015,18(3):1-5.
    [69] YU Z H,GE Y Y,XIE L,et al. Using a yeast two-hybrid system to identify FTCD as a new regulator for HIF-1αin HepG2 cells[J].Cell signal,2014,26(7):1560-1566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700