用户名: 密码: 验证码:
基于FBG的输电铁塔结构监测与数据融合研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on structure monitoring and data fusion of transmission towers based on FBG
  • 作者:杨静 ; 李英娜 ; 邬卓恒 ; 赵振刚 ; 李川
  • 英文作者:YANG Jing;LI Ying-na;WU Zhuo-heng;ZHAO Zhen-gang;LI Chuan;School of Information Engineering and Automation,Kunming University of Science and Technology;
  • 关键词:铁塔倾斜 ; 光纤光栅倾角传感器 ; 倾角监测 ; 数据融合 ; 置信距离
  • 英文关键词:tower tilt;;fiber grating tilt sensor;;tilt monitoring;;data fusion;;confidence distance
  • 中文刊名:HDZJ
  • 英文刊名:Information Technology
  • 机构:昆明理工大学信息工程与自动化学院;
  • 出版日期:2018-11-20
  • 出版单位:信息技术
  • 年:2018
  • 基金:国家自然科学基金资助项目(51567013,51667011)
  • 语种:中文;
  • 页:HDZJ201811003
  • 页数:5
  • CN:11
  • ISSN:23-1557/TN
  • 分类号:18-22
摘要
针对输电铁塔易发生主材变形、倒塔等问题,文中利用ANSYS建立有限元模型,研究铁塔在不同应力下的主要变形部位,使用光纤Bragg光栅(FBG)倾角传感器监测铁塔该处倾斜情况。通过置信距离算法对云南电网某110kV输电线路30#直线塔倾角传感器的采样值进行异常数据剔除与时序融合,得到每个月的融合值为:1. 63°、1. 62°、1. 62°、1. 60°、1. 61°。融合结果可为铁塔损伤识别提供数据支持,改善传统的目视巡视方法。
        Aiming at the problems that tower tilt,main material deformation and tower collapse in transmission towers,ANSYS was used to establish a finite element model of a straight tower to study the main stress location of the tower under different forces. Based on this,a fiber Bragg grating( FBG) tilt sensor was used to monitor the inclination of the tower. Through using confidence distance algorithm,abnormal data culling and timing fusion were performed on the sampled values of the 30 # linear tower inclination sensor of a 110 kV transmission line in Yunnan Power Grid. The fusion value of each sensor is: 1. 63°,1. 62°,1. 62°,1. 60°,1. 61°. The fusion results can provide data support for the damage identification of the tower and improve the traditional eye-watching inspection method.
引文
[1]Asgarian B,Eslamlou S D,Zaghi A E,et al. Progressive collapse analysis of power transmission towers[J]. Journal of Constructional Steel Research,2016,123:31-40.
    [2]黄新波,陈子良,赵隆,等. 110kV输电线路铁塔塔基沉降应力仿真分析与试验[J].电力自动化设备,2017,37(4):153-158.
    [3]黄俊,张丰伟,赵振刚,等.山火的无线传感与RBF分析研究[J].传感器与微系统,2016,35(11):71-73.
    [4]王黎明,高亚云,卢明,等.特高压输电线路新型防舞技术计算[J].高电压技术,2017,43(8):2541-2550.
    [5] Deng H Z,Huang B. Study on ultimate bearing capacity of main member in transmission tubular tower leg[J]. Thin-Walled Structures,2018,127:51-61.
    [6]Sarajcev P,Jakus D,Vasilj J. Introducing novel risk-based indicator for determining transmission line tower's back flashover performance[J]. Electric Power Systems Research,2018,160:337-347.
    [7]孙媛凯,李英娜,胡明耀,等.输电铁塔塔身光纤光栅结构监测与时序融合研究[J].传感技术学报,2016,29(03):451-455.
    [8] Kottonau D,Shabagin E,Noe M,et al. Opportunities for HighVoltage AC Superconducting Cables as Part of New Long-Distance Transmission Lines[J]. IEEE Transactions on Applied Superconductivity,2017,27(4):1-5.
    [9]宋刚,陈稼苗,潘峰.特高压直流输电线路山区边坡塔研究[J].中国电力,2017,50(2):40-45.
    [10]Elawady A,Damatty A E. Longitudinal force on transmission towers due to non-symmetric downburst conductor loads[J]. Engineering Structures,2016,127:206-226.
    [11]Couceiro I,París J,Martínez S,et al. Structural optimization of lattice steel transmission towers[J]. Engineering Structures,2016,117:274-286.
    [12]Park H S,Choi B H,Kim J J,et al. Seismic performance evaluation of high voltage transmission towers inSouth Korea[J]. Ksce Journal of Civil Engineering,2016,20(6):2499-2505.
    [13]黄新波,廖明进,徐冠华,等.采用光纤光栅传感器的输电线路铁塔应力监测方法[J].电力自动化设备,2016,36(4):68-72.
    [14]江文强,安利强,王烨迪,等.输电铁塔主材角钢的低温拉伸和冲击试验[J].振动.测试与诊断,2017,37(5):1040-1045.
    [15]沈小军,杜勇,王仁德,等.基于地面激光雷达的输电线路铁塔倾斜度测量[J].电子测量与仪器学报,2017,31(4):516-521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700