用户名: 密码: 验证码:
水力水质条件对重力排水管道碳排放的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A study on the influence of hydraulic condition and water quality on carbon emission of gravity sewer
  • 作者:汪钟凝 ; 陈浩 ; 周雅菲 ; 薛罡 ; 叶建锋
  • 英文作者:WANG Zhong-ning;CHEN Hao;ZHOU Ya-fei;XUE Gang;YE Jian-feng;College of Environmental Science and Engineering, Donghua University;Shanghai Academy of Environmental Sciences;
  • 关键词:重力流排水管道 ; 碳排放 ; 甲烷 ; 二氧化碳
  • 英文关键词:Gravity sewer;;Carbon emission;;Methane;;Carbon dioxide
  • 中文刊名:NYBH
  • 英文刊名:Energy Environmental Protection
  • 机构:东华大学环境科学与工程学院;上海市环境科学研究院;
  • 出版日期:2019-06-15
  • 出版单位:能源环境保护
  • 年:2019
  • 期:v.33;No.183
  • 语种:中文;
  • 页:NYBH201903005
  • 页数:8
  • CN:03
  • ISSN:33-1264/X
  • 分类号:19-26
摘要
在重力流管道条件下,通过短期降解实验分析了水力剪切力、温度、外源SO_4~(2-)及COD浓度对重力排水管道产排CH_4和CO_2的影响,探讨了溶解性有机物(DOM)的变化规律。结果表明,CH_4和CO_2的产排能力随着水力剪切力的增大而增强,但剪应力大于0.0748 N/m后CH_4产排无明显提高;37℃为CH_4和CO_2产排的最适温度,低于37℃的情况下降低温度则会明显抑制CH_4的产生;外源SO42-浓度增大显著抑制CH_4产排,但其与CO_2产排无明显相关性;外源COD浓度增大会同时增强CH_4和CO_2产排。
        Short-term degradation experiments were carried out under gravity flowed pipe condition to simulate and analyze the effects of hydraulicshear force, temperature, exogenous sulfate and COD on CH_4 and CO_2 emissions in gravity sewers. The change rules of dissolved organic matter(DOM) were analyzed. The data showed that the production and emission capacity of CH_4 and CO_2 increased with the increase of hydraulic shear force, but the CH_4 production and emission capacity did not increase significantly when the shear stress was greater than 0.0748 N/m2. 37 ℃ was the optimum temperature for the production and emission of CH_4 and CO_2. The generation of CH_4 would be inhibited by decreasing temperature when the temperature was below 37 ℃. The increase of exogenous SO_4~(2-) concentration significantly inhibited CH_4 production and emission, but it had no significant correlation with CO_2 production and emission. The increase of exogenous COD concentration would enhance the production and emission capacity of CH_4 and CO_2 simultaneously.
引文
[1]EL-FADEL M,MASSOUD M.Methane emissions from wastewater management[J].Environmental Pollution,2001,114(2):177-185.
    [2]JING S,HU S,SHARMA K R,et al.Impact of reduced water consumption on sulfide and methane production in rising main sewers[J].Journal of Environmental Management,2015,154(4):307-315.
    [3]CZEPIEL P M,CRILL P M,HARRISS R C.Methane emissions from municipal wastewater treatment processes[J].Environmental Science&Technology,1993,27(12):2472-2477.
    [4]JIANG G,GUTIERREZ O,SHARMA K R,et al.Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J].Water Research,2010,44(14):4241-4251.
    [5]JIANG G,GUTIERREZ O,SHARMA K R,et al.Optimization of intermittent,simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers[J].Water Research,2011,45(18):6163-6172.
    [6]MOHANAKRISHNAN J,GUTIERREZ O,MEYER R L,et al.Nitrite effectively inhibits sulfide and methane production in a labo ratory scale sewer reactor[J].Water Research,2008,42(14):3961-3971.
    [7]LIU Y,NI B J,GANIGU R,et al.Sulfide and methane production in sewer sediments[J].Water Research,2015,70(2):350-359.
    [8]CHEN H,LIAO Z L,GU X Y,et al.Anthropogenic Influences of Paved Runoff and Sanitary Sewage on the Dissolved Organic Matter Quality of Wet Weather Overflows:An Excitation-Emission Matrix Parallel Factor Analysis Assessment[J].Environmental Science&Technology,2017,51(3):1157-1167.
    [9]HOSEN J D,MCDONOUGH O T,FEBRIA C M,et al.Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams[J].Environmental Science&Technology,2014,48(14):7817-7824.
    [10]CHEN H,LIAO Z L,GU X Y,et al.Anthropogenic influences of paved runoff and sanitary sewage on the dissolved organic matter quality of wet weather overflows:an excitation-emission matrix parallel factor analysis assessment[J].environmental science&technology,2017,51(3):1157-1167.
    [11]YONGQIANG Z,ERIK J,YUNLIN Z,et al.Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake[J].Chemosphere,2016,144:503-509.
    [12]HOSEN J D,MCDONOUGH O T,FEBRIA C M,et al.Dis solved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams[J].Environmental Science&Technology,2014,48(14):7817-7824.
    [13]HE X S,XI B D,GAO R T,et al.Insight into the composition and degradation potential of dissolved organic matter with different hydrophobicity in landfill leachates[J].Chemosphere,2016,144:75-80.
    [14]HUO S,BEIDOU X I,HAICHAN Y U,et al.Characteristics of dissolved organic matter(DOM)in leachate with different landfill ages[J].Journal of Environmental Sciences,2008,20(4):492-498.
    [15]HE X S,XI B D,WEI Z M,et al.Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J].Journal of Hazardous Materials,2011,190(1):293-299.
    [16]OSBURN C L,HANDSEL L T,MIKAN M P,et al.Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary[J].Environmental Science&Technology,2012,46(16):8628-8636.
    [17]YU H,SONG Y,LIU R,et al.Variation of dissolved fulvic acid from wetland measured by UV spectrum deconvolution and fluorescence excitation-emission matrix spectrum with self-organizing map[J].Journal of Soils&Sediments,2014,14(6):1088-1097.
    [18]SIERRA M M D,GIOVANELA M,PARLANTI E,et al.Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques[J].Chemosphere,2005,58(6):715-733.
    [19]COELHO C,GUYOT G,HALLE A T,et al.Photoreactivity of humic substances:relationship between fluorescence and singlet oxygen production[J].Environmental Chemistry Letters,2011,9(3):447-451.
    [20]OSBURN C L,STEDMON C A.Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochthonous inputs[J].Marine Chemistry,2011,126(1):281-294.
    [21]CATAL N N,CASAS-RUIZ J P,SCHILLER D V,et al.Biodegradation kinetics of dissolved organic matter chromatographic fractions in an intermittent river[J].Journal of Geophysical Research Biogeosciences,2016,122(1):131-144.
    [22]边文骅.腐植酸形成的微生物学机理研究概况[J].腐植酸,2001(2):1-5.
    [23]LIU Y,SHARMA K R,NI B J,et al.Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J].Water Research,2015,74:155-165.
    [24]MATA-ALVAREZ J,MAC S,LLABR S P.Anaerobic digestion of organic solid wastes.An overview of research achievements and perspectives[J].Bioresource Technology,2000,74(1):3-16.
    [25]席江,王超,冉毅,等.发酵温度、进料浓度和水力停留时间对连续式厌氧发酵效果的影响[J].中国沼气,2014,32(4):43-47.
    [26]WEISS M S,ABELE U,WECKESSER J,et al.Molecular architecture and electrostatic properties of a bacterial porin[J].Science,1991,254(5038):1627-1630.
    [27]JIE C,BAOHUA G,LEBOEUF E J,et al.Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J].Chemosphere,2002,48(1):59-68.
    [28]POLAK J,BARTOSZEK M,SU KOWSKI W W.Comparison of humification processes occurring during sewage purification in treatment plants with different technological processes[J].Water Research,2009,43(17):4167-4176.
    [29]DIGNAC M F,GINESTET P,BRUCHET A,et al.Changes in the organic composition of wastewater during biological treatment as studied by NMR and IR spectroscopies[J].Water Science&Technology A Journal of the International Association on Water Pollution Research,2001,43(2):51.
    [30]LAU Y L,LIU D.Effect of flow rate on biofilm accumulation in open channels[J].Water Research,1993,27(3):355-360.
    [31]FERNANDES T V,LIER J B V,ZEEMAN G.Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin[J].Bioenergy Research,2015,8(2):821-831.
    [32]LI X,DAI X,TAKAHASHI J,et al.New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J].Bioresource Technology,2014,159(6):412-420.
    [33]耿昌全.结合水合物生成机理研究甲烷在水中的溶解度[D].浙江工业大学,2002.
    [34]ALBERT G,SHARMA K R,JURG K,et al.Development of a model for assessing methane formation in rising main sewers[J].Water Research,2009,43(11):2874-2884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700