用户名: 密码: 验证码:
β-氨基丁酸处理对采后草莓果实贮藏品质和内部还原势的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of BABA treatment on the quality and redox property in postharvest strawberries
  • 作者:伍冬志 ; 费良航 ; 廖云霞 ; 陈偲 ; 汪开拓
  • 英文作者:WU Dong-zhi;FEI Liang-hang;LIAO Yun-xia;CHEN Si;WANG Kai-tuo;College of Environmental and Chemistry Engineering,Chongqing Three Gorges University;College of Life Science and Engineering,Chongqing Three Gorges University;College of Food Science and Technology,Nanjing Agricultural University;
  • 关键词:β-氨基丁酸 ; 草莓果实 ; 品质 ; 还原势 ; 磷酸戊糖途径 ; 诱导抗病性
  • 英文关键词:β-aminobutyric acid(BABA);;strawberries;;quality;;redox status;;pentose phosphate pathway(PPP);;induced resistance
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:重庆三峡学院环境与化学工程学院;重庆三峡学院生命科学与工程学院;南京农业大学食品科技学院;
  • 出版日期:2018-10-25
  • 出版单位:食品与发酵工业
  • 年:2018
  • 期:v.44;No.370
  • 基金:国家自然基金面上项目(31671913);; 国家重点研发计划资助项目(2016YFE0130600);; 重庆市基础与前沿研究计划项目(cstc2015jcyjA80028);; 第五批重庆市高校优秀人才支持计划(2017019);; 重庆三峡学院科研创新团队建设计划(201703);; 2016年度重庆三峡学院大学生创新性实验计划项目(201610643009)
  • 语种:中文;
  • 页:SPFX201810026
  • 页数:8
  • CN:10
  • ISSN:11-1802/TS
  • 分类号:164-171
摘要
研究了10 mmol/Lβ-氨基丁酸(β-aminobutyric acid,BABA)、5 mmol/L 6-氨基烟酰胺(6-AN)以及两者复合处理对采后"丰香"草莓果实(Fragaria ananassa Duch. cv‘Fengxiang’)贮藏期间腐烂和品质的影响,并从还原势的角度探讨了BABA诱导果实抗病性的相关机理。结果表明,经10 mmol/L BABA处理的草莓果实中TSS、TA、总花色苷和总酚含量以及DPPH自由基清除率和总还原力在20℃下贮藏5 d后均显著高于对照水平,而果实发病率则显著低于对照水平。BABA处理可促进草莓果实中还原性信号分子NO和SA的积累,并诱导磷酸戊糖途径关键酶G6PDH和6PGDH活性的上升,从而促使果实中还原性物质NADPH和GSH大量生成并降低氧化性产物NADP+和GSSG含量,同时果实Fa PR1、Fa Chi3、Faβglu和Fa PAL等PRs基因表达量也显著上升。单一6-AN或6-AN+BABA处理则显著降低了果实中NO和SA的含量,抑制G6PDH和6PGDH活性以及NADPH和GSH的积累,经单一6-AN或6-AN+BABA处理的果实中PRs基因表达量也显著下降。通过这些结果可推测,草莓果实抗病性的形成与还原势的增长密切相关; BABA处理可直接诱导还原性信号分子的生成,并通过调控PPP途径关键酶活性以积累还原性物质,全面增强草莓果实内部还原势,诱导一系列PRs基因的表达,最终抑制了贮藏期间腐烂的发生并改善了果实综合品质。
        The present study was performed to investigate the effects of BABA treatment on decay and quality of postharvest strawberries( Fragaria ananassa Duch. cv‘Fengxiang') and the mechanism of pathogen resistance in respect to redox status. The results showed that compared with the control,the strawberries treated with 10 mmol/L BABA had higher contents of TSS,TA,total phenolics and anthocyanins as well as scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl and reducing power. Moreover,the treated fruit showed lower disease rate. BABA could enhance the accumulation of reductive signal molecular NO and SA,and induce the enzyme activities of G6 PDH and6 PGDH which are the key enzymes in pentose-phosphate pathway( PPP),to enhance the production of NADPH and GSH and lower the contents of NADP+and GSSG to improve internal redox status. Meanwhile,the expression levels of FaPR1,FaChi3,Faβglu and FaPAL in BABA-treated fruits increased during the stored period. The 6-AN treatment alone or in combination with BABA significantly lowered the contents of SA and NO,and inhibited the activities of G6 PDH and 6 PGDH and accumulation of NADPH and GSH. The fruits treated with 6-AN alone or 6-AN combined with BABA showed the decrease in PRs gene expressions. Therefore,it is found that 10 mmol/L BABA treatment can induce generating reductive signaling molecules and increase the activities of key enzymes in PPP to promote the reduction potential of the fruits and induced the expression of PRs gene to inhibit decay and improve overall quality of strawberries.
引文
[1] CAPOCASA F,SCALZO J,MEZZETTI B,et al. Combining quality and antioxidant attributes in the strawberry:The role of genotype[J]. Food Chemistry,2008,111(4):872-878.
    [2] SCHIRRA M,D’AQUINO S,CABRAS P,et al. Controlof postharvest diseases of fruit by heat and fungicides:efficacy,residue levels,and residue persistence. A review[J]. Journal of Agricultural and Food Chemistry,2011,59(16):8 531-8 542.
    [3] BORGES A A,SANDALIO L M. Induced resistance for plant defense[J]. Frontiers in Plant Science,2015,6(1 091):109.
    [4] SKELLY M J,LOAKE G J. Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance[J]. Antioxidants and Redox Signaling,2013,19(9):990-997.
    [5] WANG K T,LIAO Y X,CAO S F,et al. Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved[J]. Postharvest Biology and Technology,2015,102(1):51-60.
    [6] WANG L,ZHANG H,JIN P,et al. Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion withβ-aminobutyric acid[J].Postharvest Biology and Technology,2016,118(1):71-78.
    [7] WANG K T,LIAO Y X,XIONG Q,et al. Induction of direct or priming resistance against Botrytis cinerea in strawberries byβ-aminobutyric acid and their effects on sucrose metabolism[J]. Journal of Agricultural and Food Chemistry,2016,64(29):5 855-5 865.
    [8] WANG K T,WU D Z,BO Z Y,et al. Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated withβ-aminobutyric acid[J].Scientia Horticulturae,2019,244(1):352-364.
    [9]汪开拓,廖云霞,袁坤明,等.β-氨基丁酸处理对桃果实采后灰霉病的影响及其诱导抗病模式研究[J].食品与发酵工业,2016,42(2):65-71.
    [10] GUPTE S A,LI K X,OKADA T,et al. Inhibitors of pentose phosphate pathway cause vasodilation:Involvement of voltage-gated potassium channels[J]. Journal of Pharmacology and Experimental Therapeutics,2002,301(1):299-305.
    [11]汪开拓,郑永华,尚海涛,等.茉莉酸处理对采后葡萄果实贮藏期间落粒的影响[J].食品与发酵工业,2012,38(4):212-218.
    [12] CHENG G W,BREEN P J. Activity of phenylalanine ammonia-lyase(PAL)and concentrations of anthocyanins and phenolics in developing strawberry fruit[J]. Journal of the American Society for Horticultural Science,1991,116(5):865-869.
    [13] SLINKARD K,SINGLETON V L. Total phenol analysis:automation and comparison with manual methods[J]. American Journal of Enology and Viticulture,1977,28(1):49-55.
    [14] SHE G M,XU C,LIU B,et al. Polyphenolic acids from mint(the aerial of Mentha haplocalyx Briq.)with DPPH radical scavenging activity[J]. Journal of Food Science,2010,75(4):C359-C362.
    [15]龚波林.以溴化钾-溴酸钾-2',7'-二氯荧光素为试剂对痕量水杨酸的间接荧光测定法[J].分析化学,2001,29(9):1 055-1 057.
    [16] MURPHY M E,NOACK E. Nitric oxide assay using haemoglobin method[J]. Methods in Enzymology,1994,233(1):240-250.
    [17] NAGANO I,SHAPSHAK P,Yoshiok M,et al. Increased NADPH-diaphorase reactivity and cytokine expression in dorsal root ganglia in acquired immunodeficiency syndrome[J]. Journal of the Neurological Sciences,1996,136(1/2):117-128.
    [18] RAHMAN I,KODE A,BISWAS S K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method[J]. Nature Protocols,2006,1(6):3 159-3 165.
    [19]SINDELA R L,SINDELA ROVA M,BURKETOVA L.Changes in activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenase isozymes upon potato virus Y infection in tobacco leaf tissues and protoplasts[J]. Plant Physiology and Biochemistry,1999,37(3):195-201.
    [20] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principledye binding[J]. Analytical Biochemistry,1976,72(s1-2):248-254.
    [21] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T)method[J]. Methods,2001,25(4):402-408.
    [22] COHEN Y,VAKNIN M,MAUCH-MANI B. BABA-induced resistance:milestones along a 55-year journey[J].Phytoparasitica,2016,44(4):513-538.
    [23] O’BRIEN J A,DAUDI A,BUTT V S,et al. Reactive oxygen species and their role in plant defence and cell wall metabolism[J]. Planta,2012,236(3):765-779.
    [24] VAN LOON L C,VAN STRIEN E A. The families of pathogenesis-related proteins,their activities,and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999,55(2):85-97.
    [25] NGADZE E,ICISHAHAYO D,COUTINHO T A,et al.Role of polyphenol oxidase, peroxidase, phenylalanineammonia lyase,chlorogenic acid,and total soluble phenols in resistance of potatoes to soft rot[J]. Plant Disease,2012,96(2):186-192.
    [26] WALLY O,JAYARAJ J,PUNJA Z. Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for Chitinase,β-1,3-glucanase and peroxidise[J]. European Journal of Plant Pathology,2009,123(3):331-342.
    [27]汪开拓,郑永华,唐文才,等.茉莉酸甲酯处理对葡萄果实NO和H2O2水平及植保素合成的影响[J].园艺学报,2012,39(8):1 559-1 566.
    [28] MOU Z,FAN W,DONG X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J]. Cell,2003,113(7):935-944.
    [29] LINDERMAYR C,SELL S,MULLER B,et al. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide[J]. Plant Cell,2010,22(8):2 894-2 907.
    [30] LEVEE V,MAJOR I,LEVASSEUR C,et al. Expression profiling and functional analysis of populus WRKY23 reveals a regulatory role in defense[J]. New Phytologist,2009,184(1):48-70.
    [31] AHARONI A,GALILI G. Metabolic engineering of the plant primary-secondary metabolism interface[J]. Current Opinion in Biotech,2011,22(2):239-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700