用户名: 密码: 验证码:
不同浓度β-氨基丁酸处理对葡萄果实抗病性的诱导模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Different Modes of Disease Resistance Response Induced by β-Aminobutyric Acid at Different Concentrations in Grape Berries
  • 作者:廖云霞 ; 费良航 ; 夏明星 ; 伍冬志 ; 陈偲 ; 汪开拓
  • 英文作者:LIAO Yunxia;FEI Lianghang;XIA Mingxing;WU Dongzhi;CHEN Si;WANG Kaituo;College of Biology and Food Engineering, Chongqing Three Gorges University;Chongqing Entry-Exit Inspection and Quarantine Bureau;College of Food Science and Technology, Nanjing Agricultural University;
  • 关键词:葡萄 ; β-氨基丁酸 ; 诱导抗性 ; 模式 ; 品质
  • 英文关键词:grape;;β-aminobutyric acid;;induced resistance;;mode;;quality
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:重庆三峡学院生物与食品工程学院;重庆出入境检验检疫局;南京农业大学食品科技学院;
  • 出版日期:2017-08-28 12:59
  • 出版单位:食品科学
  • 年:2018
  • 期:v.39;No.582
  • 基金:国家自然科学基金面上项目(31671913);; 重庆市基础与前沿研究计划项目(cstc2015jcyj A80028);; 第五批重庆市高校优秀人才支持计划项目(2017019);; 重庆三峡学院科研创新团队建设计划项目(201703);; 2016年度重庆市大学生创新性实验计划项目(201610643009)
  • 语种:中文;
  • 页:SPKX201817036
  • 页数:8
  • CN:17
  • ISSN:11-2206/TS
  • 分类号:228-235
摘要
分析了不同浓度(1~500 mmol/L)β-氨基丁酸(β-aminobutyric acid,BABA)处理对采后葡萄果实抗病反应的诱导作用并明确相关抗性反应的模式。结果显示,10~500 mmol/L BABA处理可有效抑制果实在20℃贮藏期间灰葡萄孢(Botrytis cinerea)的侵染,从而降低果实发病率。在有效作用浓度中,经高浓度(100、500 mmol/L)BABA处理的模拟接种和B.cinerea接种葡萄果实均出现H2O2迸发、病程相关基因(Vv NPR1.1、Vv Chit4和Vv PR2)表达量提升、抗病相关酶(几丁质酶和β-1,3-葡聚糖酶)活力升高和植保素单体(白藜芦醇和白藜芦醇脱氢二聚体)积累等一系列典型抗病性反应。10 mmol/L BABA处理不能直接诱导果实上述抗病反应,但经10 mmol/L BABA处理的果实在接种B.cinerea后则出现最显著的H2O2生成量、PRs转录水平和植保素含量上升现象。同时,低浓度(10 mmol/L)BABA处理的葡萄果实中可溶性糖含量和甜度指数均显著高于高浓度(100、500 mmol/L)处理果实。这些结果暗示,高浓度(100 mmol/L或500 mmol/L)BABA处理可诱导葡萄果实的直接抗病反应;10 mmol/L BABA处理则诱导Priming(敏化反应)作用,以使果实在病原菌侵染时展现强烈抗病性;同时,Priming抗性较直接诱导作用可有效防止底物的过度消耗,以维持果实贮藏品质。
        The effect of β-aminobutyric acid(BABA) treatment at different concentrations ranging from 1-500 mmol/L on the induction of disease resistance in postharvest grape berries and the resistance responses were investigated in the present study. The results showed that BABA treatment could effectively induce disease resistance against Botrytis cinereainfection in grape berries during storage at 20 ℃. Both mock-inoculated and B. cinerea-inoculated grape berries treated with 100 or 500 mmol/L BABA exhibited typical resistance responses, namely H_2 O_2 burst, enhanced expression of defenserelated genes including Vv NPR1.1, Vv Chit4 and Vv PR2, and increased activities of chitinase and β-1,3-glucanase as well as the accumulation of stilbene phytoalexins such as trans-resveratrol and its oligomer ε-viniferin. BABA at a concentration of 10 mmol/L had no effect on inducing disease resistance in grape berries directly. However, in grape berries pretreated with 10 mmol/L BABA and then inoculated with B. cinerea, H_2 O_2 production, the transcription levels of pathogenesis-related genes and the contents of phytoalexins significantly increased among all treatments. Meanwhile, 10 mmol/L BABA-treated grape berries maintained higher contents of soluble sugars and higher sweetness index when compared with those treated with BABA at 100 and 500 mmol/L. These results implied that high concentration of BABA(100 and 500 mmol/L) could directly activate defense responses, while low concentration of BABA(10 mmol/L) could trigger a priming defense to prevent substrate overconsumption and maintain fruit quality.
引文
[1]ROMANAZZI G,KARABULUT O A,SMILANICK J L.Combination of chitosan and ethanol to control postharvest gray mold of table grapes[J].Postharvest Biology and Technology,2007,45(1):134-140.DOI:10.1016/j.postharvbio.2007.01.004.
    [2]SCHIRRA M,D’AQUINO S,CABRAS P,et al.Control of postharvest diseases of fruit by heat and fungicides:efficacy,residue levels,and residue persistence.a review[J].Journal of Agricultural and Food Chemistry,2011,59(16):8531-8542.DOI:10.1021/jf201899t.
    [3]CONRATH U.Molecular aspects of defence priming[J].Trends in Plant Science,2011,16(10):524-531.DOI:10.1016/j.tplants.2011.06.004.
    [4]COHEN Y,VAKNIN M,MAUCH-MANI B.BABA-induced resistance:milestones along a 55-year journey[J].Phytoparasitica,2016,44(4):513-538.DOI:10.1007/s12600-016-0546-x.
    [5]ZHANG C F,WANG J M,ZHANG J G,et al.Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action[J].Postharvest Biology and Technology,2011,61(2):145-151.DOI:10.1016/j.postharvbio.2011.02.008.
    [6]PORAT R,MCCOLLUM T G,VINOKUR V,et al.Effects of various elicitors on the transcription of aβ-1,3-endoglucanase gene in citrus fruit[J].Journal of Phytopathology,2002,150(2):70-75.DOI:10.1046/j.1439-0434.2002.00719.x.
    [7]ZHANG Z K,YANG D P,YANG B,et al.β-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms[J].Scientia Horticulturae,2013,160:78-84.DOI:10.1016/j.scienta.2013.05.023.
    [8]汪开拓,廖云霞,袁坤明,等.β-氨基丁酸处理对桃果实采后灰霉病的影响及其诱导抗病模式研究[J].食品与发酵工业,2016,42(2):65-71.DOI:10.13995/j.cnki.11-1802/ts.201602012.
    [9]WANG K T,LIAO Y X,XIONG Q,et al.Induction of direct or priming resistance against Botrytis cinerea in strawberries byβ-aminobutyric acid and their effects on sucrose metabolism[J].Journal of Agricultural and Food Chemistry,2016,64(29):5855-5865.DOI:10.1021/acs.jafc.6b00947.
    [10]PATTERSON B D,MACRAE E A,FERGUSON I B.Estimation of hydrogen peroxide in plant extracts using titanium(IV)[J].Analytical Biochemistry,1984,139(2):487-492.DOI:10.1016/0003-2697(84)90039-3.
    [11]ABELES F B,BOSSHART R P,FORRENCE L E,et al.Preparation and purification of glucanase and chitinase from bean leaves[J].Plant Physiology,1971,47(1):129-134.DOI:10.1104/pp.47.1.129.
    [12]BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding[J].Analytical Biochemistry,1976,72(Suppl 1/2):248-254.DOI:10.1006/abio.1976.9999.
    [13]WANG K T,LIAO Y X,KAN J Q,et al.Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries[J].International Journal of Food Microbiology,2015,194:32-39.DOI:10.1016/j.ijfoodmicro.2014.11.006.
    [14]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods,2001,25(4):402-408.DOI:10.1006/meth.2001.1262.
    [15]VERHAGEN B W M,TROTEL-AZIZ P,COUDERCHET M,et al.Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defense responses in grapevine[J].Journal of Experimental Botany,2010,61(1):249-260.DOI:10.1093/jxb/erp295.
    [16]CAO S F,ZHENG Y H,YANG Z F,et al.Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit[J].Journal of the Science of Food and Agriculture,2009,89(12):2064-2070.DOI:10.1002/jsfa.3691.
    [17]KEUTGEN A J,PAWELZIK E.Quality and nutritional value of strawberry fruit under long term salt stress[J].Food Chemistry,2008,107(4):1413-1420.DOI:10.1016/j.foodchem.2007.09.071.
    [18]COHEN Y R.β-aminobutyric acid-induced resistance against plant pathogens[J].Plant Disease,2002,86(5):448-457.DOI:10.1094/PDIS.2002.86.5.448.
    [19]O’BRIEN J A,DAUDI A,BUTT V S,et al.Reactive oxygen species and their role in plant defence and cell wall metabolism[J].Planta,2012,236(3):765-779.DOI:10.1007/s00425-012-1696-9.
    [20]MOU Z L,FAN W H,DONG X N.Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J].Cell,2003,113(7):935-944.DOI:10.1016/S0092-8674(03)00429-X.
    [21]LE HENANFF G,HEITZ T,MESTRE P,et al.Characterization of vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression[J].BMC Plant Biology,2009,9(1):54-67.DOI:10.1186/1471-2229-9-54.
    [22]WALLY O,JAYARAJ J,PUNJA Z.Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase,β-1,3-glucanase and peroxidise[J].European Journal of Plant Pathology,2009,123(3):331-342.DOI:10.1007/s10658-008-9370-6.
    [23]LE HENANFF G,FARINE S,KIEFFER-MAZET F,et al.Vitis vinifera Vv NPR1.1 is the functional ortholog of At NPR1 and its overexpression in grapevine triggers constitutive activation of PRgenes and enhanced resistance to powdery mildew[J].Planta,2011,234(2):405-417.DOI:10.1007/s00425-011-1412-1.
    [24]TIMPERIO A M,D’ALESSANDRO A,FAGIONI M,et al.Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions[J].Plant Physiology and Biochemistry,2012,50(1):65-71.DOI:10.1016/j.plaphy.2011.07.008.
    [25]WANG K T,JIN P,HAN L,et al.Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses[J].Postharvest Biology and Technology,2014,98(1):90-97.DOI:10.1016/j.postharvbio.2014.07.009.
    [26]CIPOLLINI D,PURRINGTON C B,BERGELSON J.Costs of induced responses in plants[J].Basic&Applied Ecology,2003,4(1):79-89.DOI:10.1078/1439-1791-00134.
    [27]VAN HULTEN M,PELSER M,VAN LOON L C,et al.Costs and benefits of priming for defense in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(14):5602-5607.DOI:10.1073/pnas.0510213103.
    [28]WANG K T,LIAO Y X,CAO S F,et al.Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved[J].Postharvest Biology and Technology,2015,102:51-60.DOI:10.1016/j.postharvbio.2015.02.011.
    [29]汪开拓,廖云霞,狄华涛,等.茉莉酸甲酯诱导葡萄悬浮细胞防卫反应机制的研究[J].园艺学报,2015,42(7):1225-1232.DOI:10.13995/j.cnki.11-1802/ts.201602012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700