用户名: 密码: 验证码:
离子型稀土尾矿除铵效果对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of ammonium removal effect in ionic type rare earth tailings
  • 作者:宋晨曦 ; 秦磊 ; 胡世丽 ; 王观石 ; 邓振乡 ; 彭陈亮 ; 齐晋
  • 英文作者:SONG Chenxi;QIN Lei;HU Shili;WANG Guanshi;DENG Zhenxiang;PENG Chenliang;QI Jin;School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology;Institute of Engineering, Jiangxi University of Science and Technology;
  • 关键词:离子型稀土尾矿 ; 氨氮残留赋存形式 ; 色层塔板理论 ; 浸泡除铵 ; 淋洗除铵
  • 英文关键词:ionic rare earth tailings;;form of residual ammonia nitrogen occurrence;;chromatographic plate theory;;soaking-removing ammonium;;leaching-removing ammonium
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:江西理工大学建筑与测绘工程学院;江西理工大学工程研究院;
  • 出版日期:2019-04-16 17:27
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金资助项目(51664015);; 江西省教育厅一般项目(GJJ170499);; 江西理工大学基金资助项目(jxxjbs16022);江西理工大学清江青年英才支持计划资助项目(JXUSTQJBJ2016007)
  • 语种:中文;
  • 页:HJJZ201904028
  • 页数:8
  • CN:04
  • ISSN:11-5591/X
  • 分类号:219-226
摘要
离子型稀土尾矿存在氨氮残留污染问题,分析尾矿中氨氮的赋存形式能更有效地处理尾矿中的氨氮。通过室内柱浸实验、浸泡除铵实验和淋洗除铵实验,分析稀土尾矿中氨氮残留的赋存形式,并根据色层塔板理论计算和比较2种除铵方式下的除铵效率。结果表明,尾矿中氨氮残留赋存形式包括离子交换态氨氮、不可流动溶液残留氨氮、物理吸附氨氮和化学吸附氨氮。其中主要以化学吸附氨氮为主,占尾矿氨氮残留量的30.47%~40.73%;物理吸附氨氮含量最少,占尾矿氨氮残留量的4.86%~5.34%。3种硫酸铵单耗下淋洗方式的单位体积清水除铵效率为53.84%、54.05%和75.77%;浸泡方式的单位体积清水除铵效率为14.4%、20.66%和23.10%;淋洗方式效率相比浸泡方式更有效。在处理尾矿氨氮中使用淋洗方式能有效地解决尾矿残留氨氮污染。
        The residual ammonia nitrogen is a type of pollution from ion-type rare earth tailings, the analysis of this ammonia nitrogen occurrence forms is conducive to effectively deal with it. In this study, the three kinds of experiments, such as indoor column leaching, soaking-removing ammonium and leaching-removing ammonium,were conducted to analyze the forms of residual ammonia nitrogen occurrence in rare earth tailings, calculate and compare their ammonium removal efficiencies based on the chromatographic plate theory. The results show that the forms of residual ammonia nitrogen occurrence in the tailings were ion-exchange, immobile solution,physical adsorption and chemical adsorption ones. Among them, chemical adsorption form was the most one,accounting for 30.47%~40.73% of the total residual ammonia nitrogen in tailings, and physical adsorption form was the least one, only accounting for 4.86%~5.34%. The ammonium removal efficiencies per unit volume water by leaching at three kinds of specific ammonium sulfate consumption were 53.84%, 54.05% and 75.77%,respectively, while those by soaking were 14.4%, 20.66% and 23.10%, respectively. This indicates that leaching method was more efficient than soaking method and could be a better choice to solve the residual ammonia nitrogen pollution in tallings.
引文
[1]徐忠麟,苏艳超,包一凡.我国离子型稀土开发中环境问题的法律思考[J].稀土, 2013, 34(3):98-102.
    [2]余斌,谢锦添,吉兆宁,等.奄福塘离子吸附型稀土矿原地浸出方案研究[J].国外金属矿选矿, 2004, 41(4):37-40.
    [3]?STROM M. Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils[J]. Chem?ical Geology, 2001, 175(3):249-258.
    [4]高志强,周启星.稀土矿露天开采过程的污染及对资源和生态环境的影响[J].生态学杂志, 2011, 30(12):2915-2922.
    [5]罗才贵,罗仙平,周娜娜,等.南方废弃稀土矿区生态失衡状况及其成因[J].中国矿业, 2014, 23(10):65-70.
    [6]马世豪,何星海.《城镇污水处理厂污染物排放标准》浅释[J].给水排水, 2003, 29(9):89-94.
    [7]李永绣.离子吸附型稀土资源与绿色提取[M].北京:化学工业出版社, 2014.
    [8]黄军,邵永康.高效吹脱法+折点氯化法处理高氨氮废水[J].水处理技术, 2013, 39(8):131-133.
    [9]王晓娟,李小康.乳状液膜法处理稀土废水[J].有色金属(冶炼部分), 2010(3):31-33.
    [10]王浩,成官文,宋晓薇,等.响应面分析法优化稀土废水MAP沉淀法脱氮[J].环境工程学报, 2013, 7(12):4748-4754.
    [11]罗宇智,沈明伟,李博.化学沉淀:折点氯化法处理稀土氨氮废水[J].有色金属(冶炼部分), 2015(7):63-65.
    [12]郭和蓉,陈琼贤,郑少玲,等.营养型酸性土壤改良剂对氮素吸收利用的影响[J].华中农业大学学报, 2007, 26(2):191-194.
    [13]李玉双,胡晓钧,孙铁珩,等.污染土壤淋洗修复技术研究进展[J].生态学杂志, 2011, 30(3):596-602.
    [14]张文,徐峰,杨勇,等.重金属污染土壤异位淋洗技术工艺分析及设计建议[J].环境工程, 2016, 34(12):177-182.
    [15]王华生,刘祖文,朱强,等.南方离子型稀土原地浸矿土壤中氮化物垂直分布特征[J].有色金属科学与工程, 2014, 5(6):132-136.
    [16]朱强.南方离子型稀土原地浸矿土壤氮化物淋溶规律研究[D].赣州:江西理工大学, 2013.
    [17] KOWALENKO C G, YU S. Solution, exchangeable and clay-fixed ammonium in south coast British Columbia soils[J]. Cana?dian Journal of Soil Science, 1996, 76(4):473-483.
    [18]侯潇,许秋华,孙圆圆,等.离子吸附型稀土原地浸析尾矿中稀土和铵的残留量分布及其意义[J].稀土, 2016, 37(4):1-9.
    [19]曾燕伟.无机材料科学基础[M]. 2版.武汉:武汉理工大学出版社, 2011.
    [20]王艳.黄土对典型重金属离子吸附解吸特性及机理研究[D].杭州:浙江大学, 2012.
    [21]王瑞祥,谢博毅.离子型稀土矿浸取剂遴选及柱浸工艺优化研究[J].稀有金属, 2015, 39(11):1060-1064.
    [22]田君,尹敬群.我国南方某稀土矿浸出动力学与传质的研究[J].稀有金属, 1996, 20(5):330-333.
    [23]中华人民共和国地质矿产部.地下水质检验方法纳氏试剂比色法测定铵离子:DZ/T 0064.57-1993[S].北京:中国标准出版社, 1996.
    [24] JING Q X, CHAI L Y, HAUNG X D, et al. Behavior of ammonium adsorption by clay mineral halloysite[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7):1627-1635.
    [25]石辉,赵晓光.土壤溶质运移的色谱塔板理论模型[J].西南大学学报(自然科学版), 2003, 25(3):267-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700