用户名: 密码: 验证码:
熔体静电纺丝直写技术在组织工程中的应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in melt electrospinning direct writing technology in tissue engineering
  • 作者:姚子琪 ; 马东明 ; 雷文龙 ; 焦志伟 ; 李好义 ; 徐小东 ; 张有忱
  • 英文作者:YAO Ziqi;MA Dongming;LEI Wenlong;JIAO Zhiwei;LI Haoyi;XU Xiaodong;ZHANG Youchen;College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology;China-Japanese Friendship Hospital;
  • 关键词:熔体静电纺丝 ; 直写技术 ; 纤维 ; 组织工程 ; 支架
  • 英文关键词:melt electrospinning;;direct writing technology;;fiber;;tissue engineering;;scaffolds
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:北京化工大学机电工程学院;中日友好医院;
  • 出版日期:2019-08-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:广东省省级科技计划(2016B090915001);; 国家自然科学基金(51603009)
  • 语种:中文;
  • 页:HGJZ201908030
  • 页数:7
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:265-271
摘要
熔体静电纺丝直写技术以其纤维直径、沉积形貌可控性高及无溶剂残留等优势,为高强度复杂形貌可控仿生组织工程(TE)支架的制备提供了巨大的空间,成为近年来的研究热点。本文首先简述了熔体静电纺丝直写技术相对于各类其他TE支架制备方法的优势;其次从工艺调控方面综述了熔体静电纺丝直写技术的工艺研究进展,并总结了实现复杂可控形貌TE支架的调控方法;随后从支架材料、形貌表征和细胞培养效果等方面综述了熔体静电纺丝直写技术的TE应用进展,并概括了该技术制备的TE拓扑结构支架的种类及特点;最后指出熔体静电纺丝直写技术具有广阔的研究前景,且该技术应以制备仿生、材料多样化以及复合支架为研究重点。
        The melt electrospinning direct writing technology provides a huge space for the preparation of high-strength complex morphology controllable biomimetic tissue engineering(TE) scaffolds due to its high controllability of fiber diameter and deposition morphology, solvent-free residue and other advantages. It has become a research hotspot in recent years. First, this paper briefly describes the advantages of melt electrospinning direct writing technology over various other TE scaffold preparation methods; secondly, the process research progress of melt electrospinning direct writing technology is reviewed from the aspects of process regulation, and the control methods for implementing complex controllable topography TE scaffold are summarized; then the progress of TE application of melt electrospinning direct writing technology is reviewed from the aspects of scaffold materials, morphological characterization and cell culture effects, in addition, the types and characteristics of TE topological structure scaffolds prepared by this technology are summarized; finally, it is pointed out that the melt electrospinning direct writing technology has broad research prospects, and the technology should focus on the preparation of bionics, material diversification and composite scaffolds.
引文
[1]SUBIA B,KUNDUJ,KUNDU S C,et al.Biomaterial scaffold fabrication techniques for potential tissue engineering applications[J].Tissue Engineering,2010,12(3):142-157.
    [2]WANG C C,YANG K C,LIN K H,et al.A highly organized threedimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology[J].Biomaterials,2011,32(29):7118-7126.
    [3]刘清宇,王富友,杨柳.关节软骨组织工程支架的研究进展[J].中国修复重建外科杂志,2012(10):1247-1250.LIU Q Y,WANG F Y,YANG L.Research progress of articular cartilage scaffold for tissue engineering[J].Chinese Journal of Reparative and Reconstructive Surgery,2012(10):1247-1250.
    [4]XU Y,GUO X,YANG S,et al.Construction of bionic tissue engineering cartilage scaffold based on 3D printing and oriented frozen technology[J].Journal of Biomedical Materials Research Part A,2018,106(6):1664-1676.
    [5]CHAN B P,LEONG K W.Scaffolding in tissue engineering:general approaches and tissue-specific considerations[J].European Spine Journal,2008,17(s4):467-479.
    [6]O'BRIEN F J.Biomaterials&scaffolds for tissue engineering[J].Materials Today,2011,14(3):88-95.
    [7]CARLETTI E,MOTTA A,MIGLIARESI C.Scaffolds for tissue engineering and 3D cell culture[J].Methods in Molecular Biology,2011,695:17.
    [8]林智军,王万明.组织工程软骨生物支架材料研究新进展[J].中国组织工程研究,2007,11(18):3625-3628.LIN Z J,WANG W M.Latest progress in biological scaffold materials for tissue engineered cartilage[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2007,11(18):3625-3628.
    [9]王春晖,贺娇娇,王思涵,等.静电纺丝纤维支架在软骨组织重建中的设计应用[J].海南医学,2016,27(19):3197-3199.WANG C H,HE J J,WANG S H,et al.Application of electrospinning technology in the cartilage tissue engineering[J].Hainan Medical Journal,2016,27(19):3197-3199.
    [10]KIM B S,MOONEY D J.Development of biocompatible synthetic extracellular matrices for tissue engineering[J].Trends in Biotechnology,1998,16(5):224.
    [11]WHANG K,GOLDSTICK T K,HEALY K E,et al.A biodegradable polymer scaffold for delivery of osteotropic factors[J].Biomaterials,2000,21(24):2545-2551.
    [12]MIKOS A G,BAO Y,CIMA L G,et al.Preparation of poly(glycolic acid)bonded fiber structures for cell attachment and transplantation[J].Journal of Biomedical Materials Research,2010,27(2):183-189.
    [13]MOONEY D J,MAZZONI C L,BREUER C,et al.Stabilized polyglycolic acid fibre-based tubes for tissue engineering[J].Biomaterials,1996,17(2):115-124.
    [14]SHERIDAN M H,SHEA L D,PETERS M C,et al.Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery[J].Journal of Controlled Release,2000,64(1):91-102.
    [15]MIKOS A G,THORSEN A J,CZERWONKA L A,et al.Preparation and characterization of poly(L-lactic acid)foams[J].Polymer,1994,35(5):1068-1077.
    [16]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展[J].功能高分子学报,2003,16(1):91-96.WU L B,DING J D.Advances in fabrication methodology and technology of three-dimensional porous scaffolds for tissue engineering[J].Journal of Functional Polymers,2003,16(1):91-96.
    [17]PANG L,HAO W,JIANG M,et al.Bony defect repair in rabbit using hybridrapidprototypingpolylactic-co-glycolicacid/β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells[J].Indian Journal of Orthopaedics,2013,47(4):388-394.
    [18]PARK S H,PARK D S,SHIN J W,et al.Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique:PCL versus PLGA[J].Journal of Materials Science:Materials in Medicine,2012,23(11):2671-2678.
    [19]JIANG C P,CHEN Y Y,HSIEH M F.Biofabrication and in vitro study of hydroxyapatite/m PEG-PCL-m PEG scaffolds for bone tissue engineering using air pressure-aided deposition technology[J].Materials Science&Engineering C:Materials for Biological Applications,2013,33(2):680-690.
    [20]方淑慧.骨软骨一体化再生支架3D打印复合成形的快速调压供料系统设计与实现[D].上海:上海大学,2013.FANG S H.A rapid pressure-regulated feeding system for 3D printing composite forming for osteochondral integrated regenerated scaffolds[D].Shanghai:Shanghai University,2013.
    [21]HUTMACHER D W,DALTON P D.Melt electrospinning[J].Chemistry:An Asian Journal,2011,6(1):44-56.
    [22]YANG G H,MUN F,KIM G H.Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macrostruts for tissue engineering[J].Chemical Engineering Journal,2016,288:648-658.
    [23]DALTON P D,JOERGENSEN N T,GROLL J,et al.Patterned melt electrospun substrates for tissue engineering[J].Biomedical Materials,2008,3(3):034109.
    [24]MUERZA-CASCANTE M L,HAYLOCK D,HUTMACHER D W,et al.Melt electrospinning and its technologization in tissue engineering[J].Tissue Engineering Part B:Reviews,2015,21(2):187-202.
    [25]HRYNEVICH A,ELCI B?,HAIGH J N,et al.Dimension-based design of melt electrowritten scaffolds[J].Small,2018,14(22):1800232.
    [26]DETTA N,BROWN T D,EDIN F K,et al.Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol)[J].Polymer International,2010,59(11):1558-1562.
    [27]DAYAN C B,AFGHAH F,OKAN B S,et al.Modeling 3D melt electrospinning writing by response surface methodology[J].Materials&Design,2018:S0264127518302399.
    [28]BROWN T D,DALTON P D,HUTMACHER D W.Direct writing by way of melt electrospinning[J].Advanced Materials(Deerfield Beach,Fla.),2011,23(47):5651-5657.
    [29]程礼盛,李轶,雷文龙,等.熔体直写电纺聚己内酯纤维有序沉积工艺[J].化工进展,2018,37(11):4358-4363.CHENG L S,LI Y,LEI W L,et al.Order deposition of poly(ε-caprolactone)fibers by directing writing melt electrospinning[J].Chemical Industry and Engineering Progress,2018,37(11):4358-4363.
    [30]WUNNER F M,WILLE M L,NOONAN T G,et al.Melt electrospinning writing of highly ordered large volume scaffold architectures[J].Advanced Materials,2018,30(20):1706570.
    [31]RISTOVSKI N,BOCK N,LIAO S,et al.Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control[J].Biointerphases,2015,10(1):011006.
    [32]BROWN T D,EDIN F,DETTA N,et al.Melt electrospinning of poly(ε-caprolactone)scaffolds:phenomenological observations associated with collection and direct writing[J].Materials Science&Engineering C:Materials for Biological Applications,2014,45:698-708.
    [33]BERTLEIN S,HIKIMOTO D,HOCHLEITNER G,et al.Development of endothelial cell networks in 3D tissues by combination of melt electrospinning writing with cell-accumulation technology[J].Small,2017,14(2):1701521.
    [34]BROWN T D,SLOTOSCH A,THIBAUDEAU L,et al.Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode[J].Biointerphases,2012,7(1/2/3/4):1-16.
    [35]EICHHOLZ K F,HOEY D A.Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing[J].Acta Biomaterialia,2018,75:140-151.
    [36]ABDALLA A H,NAGHMEH A,MARCIN G,et al.Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing[J].European Polymer Journal,2018,105:257-264.
    [37]HOCHLEITNER G,KESSLER M,SCHMITZ M,et al.Melt electrospinning writing of defined scaffolds using polylactidepoly(ethylene glycol)blends with 45S5 bioactive glass particles[J].Materials Letters,2017,205:257-260.
    [38]VISSER J,MELCHELS F P W,JEON J E,et al.Reinforcement of hydrogels using three-dimensionally printed microfibres[J].Nature Communications,2015,6:6933.
    [39]BAS O,DEJUANPARDO E M,MEINERT C,et al.Biofabricated soft network composites for cartilage tissue engineering[J].Biofabrication,2017,9(2):025014.
    [40]DALTON P D.Melt electrowriting with additive manufacturing principles[J].Current Opinion in Biomedical Engineering,2017,2:49-57.
    [41]CASTILHO M,FEYEN D A,FLANDESIPARRAGUIRRE M,et al.Melt electrospinning writing of poly-hydroxymethylglycolide-co-ε-caprolactone-based scaffolds for cardiac tissue engineering[J].Advanced Healthcare Materials,2017,6(18):1700311.
    [42]FARRUGIA B L,BROWN T D,UPTON Z,et al.Dermal fibroblast infiltration of poly(ε-caprolactone)scaffolds fabricated by melt electrospinning in a direct writing mode.[J].Biofabrication,2013,5(2):025001.
    [43]陈文洋.基于近场熔体静电直写技术的组织工程支架开发[D].天津:天津工业大学,2018.CHEN W Y.Development of tissue engineering scaffold based on near-field melt electrostatic direct writing technology[D].Tianjin:Tianjin Polytechnic University,2018.
    [44]ZENG J,WANG H,LIN Y,et al.Fabrication of microfluidic channels based on melt-electrospinning direct writing[J].Microfluidics and Nanofluidics,2018,22(2):23.
    [45]HAIGH J N,CHUANG Y M,FARRUGIA B,et al.Hierarchically structured porous poly(2-oxazoline)hydrogels[J].Macromolecular Rapid Communications,2016,37(1):93-99.
    [46]HOCHLEITNER G,JüNGST,TOMASZ,et al.Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing[J].Biofabrication,2015,7(3):035002.
    [47]HAIGH J N.Melt electrospinning writing as a method to form novel hydrogel architectures and constructs[D].Australia:Queensland University of Technology,2017.
    [48]MOTA C,PUPPI D,GAZZARRI M,et al.Melt electrospinning writing of three-dimensional star poly(ε-caprolactone)scaffolds[J].Polymer International,2013,62(6):893-900.
    [49]HOCHLEITNER G,JULIA FRANZISKA H,LUXENHOFER R,et al.High definition fibrous poly(2-ethyl-2-oxazoline)scaffolds through melt electrospinning writing[J].Polymer,2014,55(20):5017-5023.
    [50]BAS O,DE-JUAN-PARDO E M,CHHAYA M P,et al.Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs[J].European Polymer Journal,2015,72:451-463.
    [51]CHEN F,HOCHLEITNER G,WOODFIELD T.Additive manufacturing of a photo-cross-linkable polymer via direct melt electrospinning writing for producing high strength structures[J].Biomacromolecules,2016,17(1):208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700