用户名: 密码: 验证码:
过冷度对蒸汽气泡破碎及微气泡喷射过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Subcooling on Vapor Bubble Collapse and Microbubble Emission
  • 作者:唐继国 ; 阎明 ; 肖友军 ; 阎昌琪 ; 孙立成
  • 英文作者:TANG Ji-guo;YAN Ming;XIAO You-jun;YAN Chang-qi;SUN Li-cheng;Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University;China Nuclear Power Engineering Co.,Ltd.;China Ship Scientific Research Center;State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University;
  • 关键词:气泡微细化沸腾 ; 气泡破裂 ; 过冷度 ; 界面波动
  • 英文关键词:microbubble emission boiling;;bubble collapse;;subcooling;;surface wave
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:哈尔滨工程大学核安全与仿真技术国防重点学科实验室;中国核电工程有限公司;中国船舶科学研究中心;四川大学水力学与山区河流开发保护国家重点实验室;
  • 出版日期:2015-11-20
  • 出版单位:原子能科学技术
  • 年:2015
  • 期:v.49
  • 基金:国家自然科学基金资助项目(51376052,11475048,51106101);; 四川大学科研基金资助项目(YJ201432)
  • 语种:中文;
  • 页:YZJS201511018
  • 页数:6
  • CN:11
  • ISSN:11-2044/TL
  • 分类号:116-121
摘要
为研究过冷度对蒸汽气泡破碎及微气泡喷射过程的影响,利用高速摄像机记录不同过冷度下过冷池中蒸汽气泡凝结过程。实验结果表明:在低过冷度(ΔTsub=17K)下,蒸汽气泡界面波动发展缓慢,气泡不会破碎,而是逐渐分裂凝结;在高过冷度(40K<ΔTsub<75K)下,蒸汽气泡表面上的波动剧烈发展,随后气泡会突然破碎,并形成大量微气泡;在ΔTsub=30K时,气泡突然破碎前会有小气泡分裂现象发生。40K<ΔTsub<75K时气泡破碎形成的微气泡的直径和速度在量级上与气泡微细化沸腾区域的微气泡接近。随过冷度的升高,微气泡的直径减小,速度增加,且蒸汽气泡破碎前其表面上波动的波数迅速增加,波动的最大幅值先增加后减少。
        In order to investigate the effect of subcooling on vapor bubble collapse and microbubble emission,the condensation process of vapor bubbles in a subcooled pool at different subcoolings was recorded with a high-speed video camera.The results show that the development of surface wave emerged on the bubble surface is slow and the vapor bubbles are condensed and split up gradually without sudden collapse at low subcooling(ΔTsub=17K).At high subcooling(40K<ΔTsub<75K),the surface wave on the surface is violent and the vapor bubbles will collapse suddenly with the emission of a large number of microbubbles.Nevertheless,the process of tiny bubbles splitting offfrom large bubble is observed before sudden collapse of bubble at liquid subcooling of30 K.The diameter and velocity of microbubbles after collapse of vapor bubble are within the same order of magnitude of those in microbubble emission boiling at 40K<ΔTsub<75K.Furthermore,the diameter of microbubble decreases,while the velocity increases with the increase of subcooling.In addition,the wave number of the surface wave on bubble surfaces increases and the maximum amplitude of the surface wave increases firstly and then decreases with the increase of subcooling.
引文
[1]INADA S,MIYASAKA Y,IZUMI R,et al.A study on boiling curves in subcooled pool boiling[J].Trans JSME,1981,47:852-861.
    [2]SHOJI M,YOSHIHARA M.Burnout heat flux of water on a thin wire[C]∥Proceedings of 28th National Heat Transfer Symposium of Japan.Japan:[s.n.],1991:121-123.
    [3]TANGE M,TAKAGI S,WATANABE M,et al.Microbubble emission boiling in a microchannel and minichannel[J].Thermal Sciences Engineering,2004,12:23-29.
    [4]SUZUKI K,KOKUBU T,NAKANO M,et al.Enhancement of heat transfer in subcooled flow boiling with microbubble emission[J].Exp Therm Fluid Sci,2005,29:827-832.
    [5]SUZUKI K,NOMURA T,HONG C,et al.Subcooled flow boiling with microbubble emission in a microchannel[C]∥Proceedings of the MNHMT 2009.Shanghai:[s.n.],2009:18327.
    [6]SUZUKI K,SUZUKI K,HONG C,et al.Bubble motion in subcooled boiling with microbubble emission[C]∥Proceedings of Interdisciplinary Transport PhenomenaⅦ.Dresden,Germany:[s.n.],2009.
    [7]SUZUKI K,YUKI K,KAWAMURA H,et al.Microbubble emission boiling:An effect of pressure on subcooled flow boiling with microbubble emission[C]∥Proceedings of Interdisciplinary Transport PhenomenaⅥ.Volterra,Italy:[s.n.],2011.
    [8]SUZUKI K,INAGAKI F,HONG C.Subcooled boiling in the ultrasonic field:On the cause of microbubble emission boiling[J].Heat Transfer Engineering,2011,32(7-8):673-682.
    [9]SUZUKI K,YUKI K,HONG C.Subcooled boiling with microbubble emission:On mechanism of MEB generation[C]∥22nd International Symposium on Transport Phenomena.Delft,Netherlands:[s.n.],2011.
    [10]WANG G D,CHENG P.Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel[J].International Journal of Heat and Mass Transfer,2009,52:79-91.
    [11]WANG H,PENG X F,SURESH V G,et al.Microbubble return phenomena during subcooled boiling on small wires[J].International Journal of Heat and Mass Transfer,2007,50:163-172.
    [12]UENO I,HATTORI Y.Microbubble formation in abrupt condensation of vapor bubble exposed to subcooled pool[C]∥Proceedings of the InterPACK’09.Shanghai:[s.n.],2009.
    [13]UENO I,HATTORI Y,HOSOYA R.Condensation and collapse of vapor bubbles injected in subcooled pool[J].Microgravity Science and Technology,2011,23:73-77.
    [14]PAN L M,TAN Z W,CHEN D Q,et al.Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J].Nuclear Engineering and Design,2012,248:126-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700