用户名: 密码: 验证码:
下沉加热面上气泡微细化沸腾实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation on Microbubble Emission Boiling on Imbedded Heating Surface
  • 作者:杨凯 ; 唐继国 ; 孙立成 ; 谢果 ; 鲍静静 ; 莫政宇
  • 英文作者:YANG Kai;TANG Jiguo;SUN Licheng;XIE Guo;BAO Jingjing;MO Zhengyu;State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University;
  • 关键词:气泡微细化沸腾 ; 下沉加热面 ; 临界热流密度 ; 气泡行为
  • 英文关键词:microbubble emission boiling;;imbedded heating surface;;critical heat flux;;bubble behavior
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:四川大学水力学与山区河流开发保护国家重点实验室;
  • 出版日期:2018-03-14 09:04
  • 出版单位:原子能科学技术
  • 年:2018
  • 期:v.52
  • 基金:国家自然科学基金资助项目(51706149,51506099,51606130);; 中央高校基本科研业务费专项资金资助项目(YJ201658)
  • 语种:中文;
  • 页:YZJS201807016
  • 页数:6
  • CN:07
  • ISSN:11-2044/TL
  • 分类号:109-114
摘要
为分析加热面相对位置对气泡微细化沸腾(MEB)的影响,对下沉加热面上的过冷沸腾进行了实验研究,并与齐平加热面实验结果进行了对比。25~50K过冷度范围内,在下沉3mm加热面上观察到了MEB现象。在50 K过冷度下,MEB时的热流密度可达5.55 MW/m2。可视化结果表明:在MEB区域,下沉加热面上形成的蒸汽气膜会频繁地膨胀收缩;随过冷度的升高,膨胀收缩的周期增加,而幅值变化较小。此外,相比于齐平加热面条件,下沉加热面周围的壁面可显著限制蒸汽气膜的横向膨胀。
        In order to analyze the effect of relative location of heating surface on microbubble emission boiling(MEB),the subcooled boiling occurred on an imbedded heating surface was experimentally studied,and compared with that on a flush heating surface.At liquid subcooling of 25-50 K,MEB was observed on an imbedded heating surface that lowers tank bottom for 3 mm.The heat flux in MEB reaches 5.55 MW/m2 at liquid subcooling of 50 K.Visualized results indicate that a vapor film forms on the heating surface,and expands and shrinks frequently in regime of MEB occurred on the imbedded heating surface.The increase of liquid subcooling enlarges the period of expansion and shrinkage of the film while has limited effect on its amplitude.Furthermore,the lateral expansion of vapor film in MEB can be limited by the surrounding edge of the imbeddedheating surface significantly.
引文
[1]INADA S,MIYASAKA Y,IZUMI R,et al.A study on boiling curves in subcooled pool boiling:An effect of liquid subcooling on local heat transfer[J].Transaction of JSME,1981,47:852-861.
    [2]INADA S,MIYASAKA Y,SAKUMOTO S,et al.A study on boiling curves in subcooled pool boiling:Effect of contamination of surface on boiling heat transfer and collapse vapor slug[J].Transaction of JSME,1981,47:2 021-2 029.
    [3]INADA S,MIYASAKA Y,IZUMI R.A study on boiling curves in subcooled pool boiling:Behaviors of bubble cluster and temperature fluctuations of heating surface[J].Transaction of JSME,1981,47:2 030-2 041.
    [4]INADA S,MIYASAKA Y,IZUMI R.A study on boiling curves in subcooled pool boiling:Heat transfer mechanism in transition boiling[J].Transaction of JSME,1981,47(423):2 199-2 208.
    [5]SUZUKI K,KOKUBU T,NAKANO M,et al.Enhancement of heat transfer in subcooled flow boiling with microbubble emission[J].Experimental Thermal and Fluid Science,2005,29:827-832.
    [6]SUZUKI K,NOMURA T,HONG C,et al.Subcooled flow boiling with microbubble emission in a microchannel[C]∥Proceedings the MNHMT2009.Shanghai,China:[s.n.],2009.
    [7]SUZUKI K,HONG C,YUKI K,et al.Microbubble emission boiling:An effect of pressure on subcooled flow boiling with microbubble emission[C]∥Interdisciplinary Transport PhenomenaⅥ.Volterra,Italy:[s.n.],2011.
    [8]SUZUKI K,YUKI K,MOCHIZUKI M.Application of boiling heat transfer to high-heat-flux cooling technology in power electronics[J].Transactions of the Japan Institute of Electronics Packaging,2012,4:127-133.
    [9]WANG G D,CHENG P.Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel[J].International Journal of Heat and Mass Transfer,2009,52:79-91.
    [10]UENO I,HATTORI Y.Microbubble formation in abrupt condensation of vapor bubble exposed to subcooled pool[C]∥Proceedings of the InterPACK’09.Shanghai,China:[s.n.],2009.
    [11]UENO I,HATTORI Y,HOSOYA R.Condensation and collapse of vapor bubbles injected in subcooled pool[J].Microgravity Science and Technology,2011,23:73-77.
    [12]TANG Jiguo,YAN Changqi,SUN Licheng.Microbubble emission boiling in schcooled pool boiling and the role of Marangoni convection in its formation[J].Experiment Thermal and Fluid Science,2013,50:97-106.
    [13]TANG Jiguo,MO Zhengyu,SUN Licheng,et al.An experimental study on microbubble emission boiling in a subcooled pool:Heat transfer characteristics and visualized presentation[J].Experiment Thermal and Fluid Science,2017,80:40-52.
    [14]唐继国,阎昌琪,孙立成,等.加热面边界条件对MEB形成过程影响[J].哈尔滨工程大学学报,2015,36(5):653-735.TANG Jiguo,YAN Changqi,SUN Licheng,et al.Effect of the boundary conditions around the heating surface on the formation of MEB[J].Journal of Harbin Engineering University,2015,36(5):653-735(in Chinese).
    [15]SUZUKI K,INAGAKI F,HONG C.Subcooled boiling in the ultrasonic field:On the cause of microbubble emission boiling[J].Heat Transfer Engineering,2011,32(7-8):673-682.
    [16]李冈,宋保银,张钊,等.加热方位对流动沸腾临界热流密度影响[J].制冷学报,2015,36(3):34-40.LI Gang,SONG Baoyin,ZHANG Zhao,et al.Effect of heating orientation on the critical heat flux of flow boiling[J].Journal of Refrigeration,2015,36(3):34-40(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700