用户名: 密码: 验证码:
载铜氮化碳纳米片对单质汞的吸附脱除特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption removal of elemental mercury on Cu-loaded carbon nitride nanosheet
  • 作者:刘东京 ; 张禛 ; 吴江
  • 英文作者:LIU Dong-jing;ZHANG Zhen;WU Jiang;School of Energy and Power Engineering, Jiangsu University;College of Energy and Mechanical Engineering, Shanghai University of Electric Power;
  • 关键词:单质汞 ; 氮化碳 ; 铜修饰 ; 莫特-肖特基效应
  • 英文关键词:elemental mercury;;carbon nitride;;copper modification;;Mott-Schottky effect
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:江苏大学能源与动力工程学院;上海电力大学能源与机械工程学院;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:江苏大学高级人才基金资助项目(18JDG017);; 国家自然科学基金重点资助项目(21237003)
  • 语种:中文;
  • 页:ZGHJ201905010
  • 页数:7
  • CN:05
  • ISSN:11-2201/X
  • 分类号:72-78
摘要
用简易热剥离法合成了氮化碳纳米片(CNNS),再通过等体积浸渍法将铜负载于CNNS表面合成了载铜CNNS吸附剂,用于低温下吸附脱除气态单质汞(Hg~0).利用氮气吸附-脱附、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对吸附剂进行表征.结果表明:CNNS对Hg~0具有良好的吸附性能,吸附温度为120℃时,脱汞效率约为54.2%;载铜修饰可极大提高CNNS的脱汞活性,脱汞效率在40~240℃温度范围内均大于82.3%,这归因于铜与氮化碳间的紧密接触.煅烧温度对载铜CNNS的脱汞活性影响较大,最佳煅烧温度为200℃.通过载铜修饰可有效活化CNNS,提高其对Hg~0的氧化能力,这可能归因于铜离子与氮化碳之间的莫特-肖特基电子转移效应. SO_2和水蒸气对载铜CNNS的脱汞性能有抑制作用.
        Carbon nitride nanosheet(CNNS) was synthesized via a facile thermal exfoliation approach and employed for adsorption removal of gaseous elemental mercury(Hg~0) at low temperature. The sorbents were characterized by nitrogen adsorption-desorption isotherms, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and X-ray photoelectron spectroscopy(XPS) techniques. The results showed that CNNS performed well toward Hg~0 adsorption with a removal efficiency around 54.2% at 120℃. The Hg~0 removal efficiency of CNNS could be greatly enhanced by Cu-modification to more than 82.3% at the temperature range of 40 to 240℃ due to the intimate contact of copper and carbon nitride. Calcination temperature had a big influence on Hg~0 capture ability of Cu-modified CNNS. The optimal annealing temperature was 200℃. CNNS could be efficiently activated by Cu-modification and its Hg~0 oxidation ability was enhanced, probably attributed to the Mott-Schottky electron transfer effect between Cu ions and carbon nitrides. SO_2 and H_2 O can inhibit Cu-modified CNNS's Hg~0 removal performance.
引文
[1] Liu D J, Lu C, Wu J. Gaseous mercury capture by copper-activated nanoporous carbon nitride[J]. Energy&Fuels, 2018, 32(8):8287-8295.
    [2] Xie J, Qu Z, Yan N, et al. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J].Journal of Hazardous Materials, 2013,261:206-213.
    [3] Yao H, Luo G, Xu M, et al. Mercury emission and species during combustion of coal and waste[J]. Energy&Fuels, 2006,20(5):1946-1950.
    [4] Li HL, Wu C, Li Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B Environmental, 2012,111:381-388.
    [5] Liu Z, Adewuyi Y G, Shi S, et al. Removal of gaseous HgO using novel seaweed biomass-based activated carbon[J]. Chemical Engineering Journal, 2019, 366:41-49.
    [6] Xu W, Adewuyi Y, Liu Y, et al. Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound[J]. Fuel Processing Technology, 2018,170:21-31.
    [7] Wang S, Zhang Y, Gu Y, et al. Using modified fly ash for mercury emission control for coal-fired power plant applications in China[J].Fuel, 2016,181:1230-1237.
    [8]左海清,徐东耀,但海均,等.凹凸棒石烟气脱汞吸附剂的研究进展[J].化工进展.2017,36(10):3533-3539.Zuo H Q, Xu D Y, Dan H J, et al. Research progress in attapulgiteabsorbents for mercury removal from flue gases. Chemical Industry and Engineering Progress(in Chinese), 2017,36(10):3533-3539.
    [9] Jampaiah D, Ippolito S J, Sabri Y M, et al. Ceria-zirconia modified mnox catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science&Technology, 2016,6(6):1792-1803.
    [10]王悦,蒋权,尚介坤,等.介孔氮化碳材料合成的研究进展[J].物理化学学报,2016,32(8):1913-1928.Wang Y, Jiang Q, Shang J K, et al. Advances in the Synthesis of Mesoporous Carbon Nitride Materials. Acta Physico-Chimica Sinica(in Chinese), 2016,32(8):1913-1928.
    [11] Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012,2:1596-1606.
    [12] Zhu J, Wei Y, Chen W, et al. Graphitic carbon nitride as a metal-free catalyst for NO decomposition[J]. Chemical Communications, 2010,46:6965-6967.
    [13] Koh G,Zhang Y W,Pan H. First-principles study on hydrogen storage by graphitic carbon nitride nanotubes[J]. International Journal of Hydrogen Energy, 2012,37(5):4170-1178.
    [14] Xiao J, Xie Y, Nawaz F, et al. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants[J]. Applied Catalysis B Environmental, 2016,183:417-425.
    [15] Xiao J, Han Q, Xie Y, et al. Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment[J]. Environmental Science&Technology, 2017,51:13380-13387.
    [16] Liu D, Zhou W, Wu J. Effect of Ce and La on the activity of CuO/ZSM-5and MnOx/ZSM-5composites for elemental mercury removal at low temperature[J]. Fuel, 2017,194(4):115-122.
    [17] Svintsitskiy D A,Kardash T Y,Stonkus O A,et al. In situ XRD,XPS,TEM, and TPR study of highly active in CO oxidation CuO nanopowders[J]. Journal of Physical Chemistry C, 2013,117(117):14588-14599.
    [18] Ren H T,Jia S Y,Wu Y,et al. Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light[J].Industrial&Engineering Chemistry Research, 2014,53:17645-17653.
    [19] Liu D J, Zhang Z,Wu J. Elemental mercury removal by MnO2nanoparticle decorated carbon nitride nanosheet[J]. Energy&Fuels,2019, 33(4):3089-3097.
    [20] Dong F, Sun Y, Wu L, et al. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance[J]. Catalysis Science&Technology, 2012,2:332-1335.
    [21] Bian J, Li Q, Huang C, et al. Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications[J]. Nano Energy, 2015,15:353-361.
    [22] Yan S, Li Z, Zou Z. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J].Langmuir, 2010,26:3894-390.
    [23] Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012,2:1596-1606.
    [24] Li H, Wu S, Li L, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO and Hg0 oxidation at low temperatures[J]. Catalysis Science&Technology, 2015,5:5129-5138.
    [25] Zhang Q, Xu L, Ning P, et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014,317:955-961.
    [26] Sasmaz E, Kirchofer A, Jew A D,et al. Mercury chemistry on brominated activated carbon[J]. Fuel, 2012,99:188-196.
    [27] Chen T,Guo S,Yang J, et al. In situ activated nitrogen-doped carbon by embeded nickel via Mott-Schottky effect for oxygen reduction reaction[J]. ChemPhysChem, 2017,18:3454-3461.
    [28] Fu T, Wang M, Cai W, et al. Acid-resistant catalysis without use of noble metals:carbon nitride with underlying nickel[J]. ACS Catalysis,2014,4:2536-2543.
    [29] Khedr M H, Abdel Halim K S, Nasr M I, et al. Effect of temperature on the catalytic oxidation of CO over nano-sized iron oxide[J].Materials Science and Engineering A, 2006,430(1/2):40-45.
    [30] Liu H, Zhang H, Yang H. Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes-supported TiO2[J]. Chinese Journal of Catalysis, 2014,35:66-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700