用户名: 密码: 验证码:
强侧风对时速350 km高速列车气动性能影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Strong Crosswind on Aerodynamic Performance of High Speed Train at the Speed of 350 km/h
  • 作者:谢红太
  • 英文作者:Xie Hongtai;Railway Planning and Design Institute, China Design Group Co., Ltd.;School of Mechatronic Engineering, Lanzhou Jiaotong University;
  • 关键词:高速列车 ; 空气动力学 ; 流场结构 ; NURBS方法
  • 英文关键词:high speed train;;crosswind;;aerodynamics;;flow structure;;finite element analysis;;NURBS method;;aerodynamic drag
  • 中文刊名:HDJT
  • 英文刊名:Journal of East China Jiaotong University
  • 机构:中设设计集团股份有限公司铁道规划设计研究院;兰州交通大学机电工程学院;
  • 出版日期:2019-06-15
  • 出版单位:华东交通大学学报
  • 年:2019
  • 期:v.36;No.167
  • 语种:中文;
  • 页:HDJT201903002
  • 页数:9
  • CN:03
  • ISSN:36-1035/U
  • 分类号:11-19
摘要
采用NURBS曲面设计方法完成对某型高速列车头车的三维数字化设计建模,基于三维定常不可压的黏性流场N-S及k-ε方程湍流模型,利用有限体积数值模拟方法分析计算出列车的速度阻力函数关系,同时针对列车在不同风向角的强侧风环境中运行时压力场和速度场做了进一步研究。研究发现:在无风明线上运行时列车所受空气阻力与运行速度的平方成正比,侧风运行时随着风向角的扩大空气阻力系数呈现先增大后逐渐下降的变化趋势。流场分布结构复杂不规律,当侧风情况较为严重时正压区主要分布在迎风侧,负压区主要分布在背风侧和车顶部位,且负压表现更为强烈,列车前端滞止点向迎风侧发生偏移,致使迎风侧与背风侧产生巨大压差。
        This study adopted the NURBS surface design method to complete 3 D digital design modeling of a high speed train headstock. Based on the turbulent model of the three-dimensional, steady, incompressible, viscous flow field N-S and k-ε equations, the finite-element-volume numerical simulation method was used to analyze and calculate the relationship between train speed and air resistance. At the same time, further analysis of the pressure field and velocity field of the train operating in strong lateral wind environments with different wind direction angles was conducted. The study found that the air resistance of the train was proportional to the square of the running speed when the train was running in a wind-free long straight railway line. When the wind was running in the crosswind, the air resistance coefficient increased first and then gradually decreased with the expansion of the wind angle. The distribution structure of the flow field was complex and irregular. When the crosswind condition was more serious, the positive pressure zone was mainly distributed on the windward side of the train, while the negative pressure zone was mainly distributed on the leeward side and the top of the train,and the negative pressure performance was more intense. The front-end stagnation point of the train shifted toward the windward side, resulting in a huge pressure difference between the windward side and the leeward side.
引文
[1]杨国伟,魏宇杰,赵桂林,等.高速列车的关键力学问题[J].力学进展,2015(45):217-460.
    [2]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
    [3] ANDERSSON E, H GGSTR M J, SIMA M, et al. Assessment of train-overturning risk due to strong cross-wind[J]. Journal of Rail and Rapid Transit,2004,218(3):213-223.
    [4] DIEDRICHS B, SIMA M, ORELLANO A, et al. Crosswind stability of a high-speed train on a high embankment[J]. Journal of Rail and Rapid Transit,2007,221(2):205-225.
    [5]何华,田红旗,熊小慧,等.横风作用下敞车的气动性能研究[J].中国铁道科学,2006,27(3):73-78.
    [6]周丹,田红旗,鲁寨军.大风对路堤上运行的客运列车气动性能的影响[J].交通运输工程学报,2007,7(4):6-9.
    [7] BETTLE J,HOLLOWAY A G L,VENART J E S. A computational study of the aerodynamic forces acting on a tractortrailer vehicle on a bridge in cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(5):573-592.
    [8] SUZUKI M,TANEMOTO K,MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(1/2):209-218.
    [9]谢红太,谭春梅,武振锋.基于SolidWorks的CRH2轮轴过盈装配有限元分析[J].大连交通大学学报,2017,38(6):70-73.
    [10]王东屏,何正凯,李明高,等.动车组气动阻力降阻优化数值研究[J].铁道学报,2011,33(10):15-18.
    [11] BAKER C J. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(6/7):266-298.
    [12] HU S M,LI Y F,JU T,et,al. Modifying the shape of NURBS surface with geometric constraints[J]. Computer Aided Design,2001(33):903-912.
    [13] ZHONG D H,LIU J,LI M,et,al. NURBS reconstruction of digital terrain for hydropower engineering based on TIN model[J].Progress in Natural Science,2008(18):1409-1415.
    [14] OZBOLAT T,KOC B. Multi-directional blending for heterogeneous objects[J]. Computer Aided Design,2011,43(8):863-875.
    [15]胡开业,卢友敏,丁勇. NURBS方法的深V型三体船稳性[J].哈尔滨工程大学学报,2011,32(10):1273-1294.
    [16] ZHANG G H,YANG X Q,ZHANG C M. Weight-based shape modification of NURBS curve[J]. Journal of Computer-aided Design and Computer Graphics,2004(16):1396-1400.
    [17]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:24-50.
    [18]谢红太.基于ANSYS的CRH2型动车组轴盘热应力分析[J].机车电传动,2018(2):67-72.
    [19]谢红太.动车组轴盘温度场及应力场数值模拟分析[J].华东交通大学学报,2018,35(1):116-122.
    [20]祝志文,陈伟芳,陈政清.横风中双层客车车辆的风荷载研究[J].国防科技大学学报,2001,23(5):117-121.
    [21] KHIER W,BREUER M,DURST F. Flow structure around trains under side wind conditions:numerical study[J]. Computers and Fluids,2000,29(2):179-195.
    [22]谢红太.高速列车过特长双线隧道时列车及隧道表面所受静压的数值模拟分析方法:201810572539.2[P]. 2018-11-6.
    [23]李明,刘斌,张亮.高速列车头型气动外形关键结构参数优化设计[J].机械工程学报,2016,52(20):120-125.
    [24]陈大伟,姚拴宝,刘韶庆,等.高速列车头型气动反设计方法[J].浙江大学学报(工学版),2016,50(04):631-640.
    [25]武振锋,卫晓娟,陈周锋,等.椭球型高速列车头车设计与阻力特性数值模拟[J].兰州大学学报(自然科学版),2015,51(5):711-715.
    [26]左雄,罗意平,刘冬雪.城际列车气动阻力组成分析及减阻研究[J].铁道科学与工程学报,2018,15(3):734-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700