用户名: 密码: 验证码:
具有高可见光催化活性的Pt/Bi_(24)O_(31)Cl_(10)复合纳米片的合成(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pt/Bi_(24)O_(31)Cl_(10) composite nanosheets with significantly enhanced photocatalytic activity under visible light irradiation
  • 作者:徐博冉 ; 李娟 ; 刘璐 ; 李延东 ; 郭绍辉 ; 高旸钦 ; 李宁 ; 戈磊
  • 英文作者:Boran Xu;Juan Li;Lu Liu;Yandong Li;Shaohui Guo;Yangqin Gao;Ning Li;Lei Ge;State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing;Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing;
  • 关键词:卤氧铋 ; 光催化 ; Bi_(24)O_(31)Cl_(10) ; 甲基橙降解
  • 英文关键词:Bismuth-based oxyhalide;;Photocatalyst;;Bi_(24)O_(31)Cl_(10);;Methyl orange degradation
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:中国石油大学(北京)重质油国家重点实验室;中国石油大学(北京)理学院材料科学与工程系;
  • 出版日期:2019-04-04
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(51572295,21273285 and 21003157);; Beijing Nova Program(2008B76);; Science Foundation of China University of Petroleum Beijing(KYJJ2012-06-20 and 2462016YXBS05)~~
  • 语种:英文;
  • 页:CHUA201905013
  • 页数:9
  • CN:05
  • ISSN:21-1601/O6
  • 分类号:115-123
摘要
卤氧铋是一类具有独特层状堆叠结构的半导体光催化剂,但单一的卤氧铋存在着光生电子与空穴易复合等缺陷.而贵金属颗粒通常可以充当电子"陷阱",促进电荷转移,延长载流子寿命,从而产生更好的光催化性能.本文成功合成了Bi_(24)O_(31)Cl_(10)光催化剂,并对其进行Pt纳米颗粒修饰,从而获得了具有高光催化性能的光催化剂Pt/Bi_(24)O_(31)Cl_(10).其中,Bi_(24)O_(31)Cl_(10)是以Bi(NO_3)_3·5H_2O和NaCl作为前驱体并用氨水调节pH后水热制得,而Pt的负载使用光还原法.对获得的样品进行XRD测试并将结果与Bi_(24)O_(31)Cl_(10)的标准卡片进行对比,发现各峰的位置都有较好的对应,证明Bi_(24)O_(31)Cl_(10)合成成功.采用TEM观测Pt/Bi_(24)O_(31)Cl_(10)的形貌,发现Bi_(24)O_(31)Cl_(10)呈片状,其表面存在Pt颗粒.XPS测试发现,该样品只含有Pt,Bi,O,Cl四种元素,且它们的价态符合预期.这进一步说明成功合成了Pt/Bi_(24)O_(31)Cl_(10).考察了可见光照射下Bi_(24)O_(31)Cl_(10)和Pt负载量分别为0.5%,1%,2%和3%的Pt/Bi_(24)O_(31)Cl_(10)对甲基橙溶液的降解的光催化性能.结果表明,相比于载体,Pt/Bi_(24)O_(31)Cl_(10)的光催化性能有了显著提高,其中1%Pt/Bi_(24)O_(31)Cl_(10)的光催化活性最佳,并且在循环降解实验中表现出稳定的光催化活性.DRS测试结果表明,Bi_(24)O_(31)Cl_(10)的带隙宽度为2.45 eV,而Pt的负载有效减小了禁带宽度,从而提高了催化剂对光的利用率.对Bi_(24)O_(31)Cl_(10)进行了DFT建模,结果显示,Bi,Cl和O原子的排列遵循分层叠加模型,且每层垂直于内部静电场堆叠.而从它的能带结构和状态密度(DOS)可知,其导、价带边沿较为分散,这意味着光生载流子的有效质量较小,从而使载流子的运输更为容易.利用DRS以及对Bi_(24)O_(31)Cl_(10)能带结构的计算结果,根据半经验公式可知,Bi_(24)O_(31)Cl_(10)的导、价带位置分别为0.395和2.845 eV.而Pt的费米能级为0.8 eV.结合ESR测试结果,可对Pt/Bi_(24)O_(31)Cl_(10)催化降解甲基橙的过程提出合理猜想:Bi_(24)O_(31)Cl_(10)被光激发后,其表面的Pt充当电子"陷阱"以促进电子和空穴分离,被Pt捕获的电子与表面吸附的O_2形成O_2~–,并进一步与甲基橙反应,完成光降解过程.
        Efficient composite semiconductor photocatalysts are highly desirable for the visible-light-driven degradation of organic pollutants.In this study,Bi_(24)O_(31)Cl_(10) photocatalyst was prepared via a hydrothermal method and modified with Pt nanoparticles(NPs)through a facile deposition procedure.The composite photocatalyst was characterized by X-ray diffraction,transmission electronic microscopy,X-ray photoelectron spectroscopy,UV-vis diffusion reflectance spectroscopy,photoluminescence spectroscopy,and electron spin resonance.The 1.0 wt%Pt/Bi_(24)O_(31)Cl_(10) photocatalyst showed the highest activity for the degradation of methyl orange under visible light(source:300 W Xe lamp coupled with a UV-cutoff filter),and the photocatalytic degradation efficiency improved about 2.2 times compared to that of pure Bi_(24)O_(31)Cl_(10).The composite photocatalyst could maintain most of its activity after four runs of the photocatalytic experimental cycle.This study could provide a novel insight for the modification of other desirable semiconductor materials to achieve high photocatalytic activities.
引文
[1]X.L.Jin,L.Q.Ye,H.Q.Xie,G.Chen,Coord.Chem.Rev.,2017,349,84-101.
    [2]F.J.Wu,X.Li,W.Liu,S.T.Zhang,Appl.Surf.Sci.,2017,405,60-70.
    [3]X.J.Zou,Y.Y.Dong,X.D.Zhang,Y.B.Cui,X.X.Ou,X.H.Qi,Appl.Surf.Sci.,2017,391,525-534.
    [4]F.Zuo,L.Wang,T.Wu,Z.Y.Zhang,D.Borchardt,P.Y.Feng,J.Am.Chem.Soc.,2010,132,11856-11857.
    [5]L.Ge,C.C.Han,J.Liu,Y.F.Li,Appl.Catal.A,2011,409,215-222.
    [6]L.Ge,J.Liu,Appl.Catal.B,2011,105,289-297.
    [7]X.X.Wang,Q.Ni,D.W.Zeng,G.L.Liao,Y.W.Wen,B.Shan,C.S.Xie,Appl.Surf.Sci.,2017,396,590-598.
    [8]F.Dong,L.W.Wu,Y.J.Sun,M.Fu,Z.B.Wu,S.C.Lee,J.Mater.Chem.,2011,21,15171-15174.
    [9]S.B.Ning,H.X.Lin,Y.C.Tong,X.Y.Zhang,Q.Y.Lin,Y.Q.Zhang,J.L.Long,X.X.Wang,Appl.Catal.B,2017,204,1-10.
    [10]F.Dong,T.Xiong,S.Yan,H.Q.Wang,Y.J.Sun,Y.X.Zhang,H.W.Huang,Z.B.Wu,J.Catal.,2016,344,401-410.
    [11]H.Y.Li,N.J.Li,D.Y.Chen,Q.F.Xu,J.M.Lu,Appl.Surf.Sci.,2017,403,80-88.
    [12]W.W.Liu,L.L.Qiao,A.Q.Zhu,Y.Liu,J.Pan,Appl.Surf.Sci.,2017,426,897-905.
    [13]Y.J.Sun,X.Xiao,X.A.Dong,F.Dong,W.Zhang,Chin.J.Catal.,2017,38,217-226.
    [14]W.D.Zhang,X.L.Liu,X.A.Dong,F.Dong,Y.X.Zhang,Chin.J.Catal.,2017,38,2030-2038.
    [15]E.Ha,L.Y.S.Lee,H.W.Man,S.C.E.Tsang,K.Y.Wong,ACS Appl.Mater.Interfaces,2015,7,9072-9077.
    [16]K.L.Zhang,C.M.Liu,F.Q.Huang,C.Zheng,W.D.Wang,Appl.Catal.B,2006,68,125-129.
    [17]J.Li,L.Z.Zhang,Y.J.Li,Y.Yu,Nanoscale,2014,6,167-171.
    [18]H.Z.An,Y.Du,T.M.Wang,C.Wang,W.C.Hao,J.Y.Zhang,Rare Metals,2008,27,243-250.
    [19]X.Zhang,Z.H.Ai,F.L.Jia,L.Z.Zhang,J.Phys.Chem.C,2008,112,747-753.
    [20]W.Wei,Y.Dai,B.B.Huang,J.Phys.Chem.C,2009,113,5658-5663.
    [21]J.Shang,W.C.Hao,X.J.Lv,T.M.Wang,X.L.Wang,Y.Du,S.X.Dou,T.F.Xie,D.J.Wang,J.O.Wang,ACS Catal.,2014,4,954-961.
    [22]J.L.Zhao,X.W.Lv,X.X.Wang,J.Yang,X.J.Yang,X.B.Lu,Mater.Lett.,2015,158,40-44.
    [23]B.Gao,A.K.Chakraborty,J.M.Yang,W.I.Lee,Bull.Korean Chem.Soc.,2010,31,1941-1944.
    [24]S.T.Huang,Y.R.Jiang,S.Y.Chou,Y.M.Dai,C.C.Chen,J.Mol.Catal.A,2014,391,105-120.
    [25]F.T.Li,Q.Wang,X.J.Wang,B.Li,Y.J.Hao,R.H.Liu,D.S.Zhao,Appl.Catal.B,2014,150-151,574-584.
    [26]A.K.Chakraborty,M.A.Kebede,React.Kinet.Mech.Catal.,2012,106,83-98.
    [27]G.H.Dong,W.Ho,L.Z.Zhang,Appl.Catal.B,2015,168,490-496.
    [28]Y.Huang,Y.M.He,M.Cui,Q.Y.Nong,J.X.Yu,F.M.Wu,X.Q.Meng,Catal.Commun.,2016,76,19-22.
    [29]X.Y.Liu,Y.G.Su,Q.H.Zhao,C.F.Du,Z.L.Liu,Sci.Rep.,2016,6,28689.
    [30]L.Wang,C.B.Zhang,F.Gao,G.Mailhot,G.Pan,Chem.Eng.J.,2017,314,622-630.
    [31]S.F.Yang,C.G.Niu,D.W.Huang,H.Zhang,C.Lianga,G.M.Zeng,Environ.Sci.-Nano,2017,4,585-595.
    [32]X.L.Jin,L.Q.Ye,H.Wang,Y.R.Su,H.Q.Xie,Z.G.Zhong,H.Zhang,Appl.Catal.B,2015,165,668-675.
    [33]C.Y.Wang,X.Zhang,X.N.Song,W.K.Wang,H.Q.Yu,ACS Appl.Mater.Interfaces,2016,8,5320-5326.
    [34]B.X.Yin,Z.Y.Fang,B.F.Luo,G.Y.Zhang,W.D.Shi,Catal.Lett.,2017,147,2167-2172.
    [35]C.L.Yu,F.F.Cao,G.Li,R.F.Wei,J.C.Yu,R.C.Jin,Q.Z.Fan,C.Y.Wang,Sep.Purif.Technol.,2013,120,110-122.
    [36]L.Wang,J.Shang,W.C.Hao,S.Q.Jiang,S.H.Huang,T.M.Wang,Z.Q.Sun,Y.Du,S.X.Dou,T.F.Xie,D.J.Wang,J.Q.Wang,Sci.Rep.,2014,4,7384.
    [37]X.Xiao,C.Liu,R.P.Hu,X.X.Zuo,J.M.Nan,L.S.Li,L.S.Wang,J.Mater.Chem.,2012,22,22840-22843.
    [38]Z.Q.Li,X.S.Lin,L.Zhang,X.T.Chen,Z.L.Xue,Mater.Res.Bull.,2012,47,2422-2427.
    [39]Y.F.Fang,W.H.Ma,Y.P.Huang,G.W.Cheng,Chem.-Eur.J.,2013,19,3224-3229.
    [40]Y.H.Zhang,Z.G.Yi,G.H.Wu,Q.Shen,J.Photochem.Photobiol.A,2016,327,25-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700