用户名: 密码: 验证码:
泥岩各向异性热-水-力耦合特性——基于ATLAS Ⅲ现场加热试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupled thermo-hydro-mechanical anisotropy characteristics of clay——Based on the ATLAS Ⅲ in situ heating test
  • 作者:马永尚 ; 陈卫忠 ; 龚哲 ; 于洪丹 ; 李翻翻 ; 李香玲
  • 英文作者:MA Yong-shang;CHEN Wei-zhong;GONG Zhe;YU Hong-dan;LI Fan-fan;LI Xiang-ling;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan;Geotechnical and Structural Engineering Research Center,Shandong University;Wuhan Municipal Engineering Design & Research Institute Co., Ltd.;Belgian Nuclear Research Centre;
  • 关键词:Boom ; clay ; 热-水-力耦合 ; Drucker-Prager帽盖模型 ; 损伤 ; ATLAS ; Ⅲ现场加热试验
  • 英文关键词:Boom clay;;thermo-hydro-mechanical coupling;;Drucker-Prager cap model;;damage;;ATLAS Ⅲ heating test
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;山东大学岩土与结构工程研究中心;武汉市政工程设计研究院有限责任公司;比利时核废物泥岩处置研究中心;
  • 出版日期:2017-12-04 15:11
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.285
  • 基金:国家杰出青年基金项目(No.51225902);; 国家自然科学基金资助项目(No.51479190);; 国家重点基础研究发展计划(973计划)(No.2013CB036006)~~
  • 语种:中文;
  • 页:YTLX201802004
  • 页数:12
  • CN:02
  • ISSN:42-1199/O3
  • 分类号:35-45+53
摘要
比利时放射性核废料地质备选场址Boom clay是一种典型的横观各向同性材料,在Drucker-Prager帽盖模型的基础上,构建了适用于Boom clay的横观各向同性特点的热-水-力耦合弹塑性本构模型,该模型可反映温度对其强度、弹性模量、渗透性等的影响,并在ABAQUS中进行了二次开发。为验证所建立模型的合理性,结合比利时HADES地下实验室ATLAS Ⅲ现场加热试验结果,应用所提出的模型对加热过程中围岩的温度和孔隙水压力的变化规律进行了数值仿真分析。结果表明:所建立的模型能够正确地描述现场加热试验过程中围岩温度场和孔压场所呈现出的各向异性特征,主要表现为热源水平面内测点的孔压在加热功率升高时先略为下降后才升高,在加热功率下降时先略为升高后才下降,而竖直面内测点的孔压在加热功率升高时立即升高,在加热功率下降时立即下降。研究成果表明,考虑各向异性的THM耦合分析能更好地反映加热过程中泥岩温度场和孔压场的实际分布情况,研究结果对类似工程或现场试验的设计、安全运行提供重要的决策依据。
        Boom clay, as a study case for the potential geological disposal of high-level and long-lived radioactive waste in Belgium, can be considered as a transversely isotropic geomaterial. This paper presents a coupled thermo-hydro-mechanical(THM) elasto-plastic damage model which is based on the Drucker-Prager cap model. The model is able to reflect thermal effect on the strength, elastic modulus and permeability of Boom clay. The developed model was implemented in ABAQUS finite element code through subroutine USDFLD. Three dimensional numerical simulation analysis was conducted of the ATLAS III in-situ heating tests at the HADES underground research facility to validate the proposed constitutive model. The results of the numerical simulation are compared with in situ measurements in which the coupled THM properties of Boom clay were analyzed. It indicates that the model can reasonably depict the main features of coupled THM anisotropy behaviors of temperature and pore water pressure. Remarkably anisotropic characteristics were found on temperature and pore water pressure changes of Boom clay with thermal load. The pore pressure in the horizontal plan shows temporary decrease and then increase after increasing power, and temporary increase and then decrease after decreasing power. The pore pressure in the vertical plan shows immediate increase after increasing power and immediate decrease after decreasing power. This study shows that the anisotropic coupled THM elasto-plastic damage model can accurately reproduce the temperature and pore water pressure changes during the heating test. The results of this study can provide valuable information for the design and operation of similar engineering/in situ tests.
引文
[1]WEMAERE I,MARIVOET J,BEAUFAYS R,et al.Core manipulations and determination of hydraulic conductivities in the laboratory for the Mol-1 borehole(April-May 1997)[R].Mol:Belgian Nuclear Research Centre,SCK·CEN,2002.
    [2]BASTIAENS W,BERNIER F,LI X L.SELFRAC:Experiments and conclusions on fracturing,self-healing and self-sealing processes in clays[J].Physics and Chemistry of the Earth,2007,32(8):600-615.
    [3]CHEN G J,SILLEN X,VERSTRICHT J,et al.ATLASIII in situ heating test in boom clay:Field data,observation and interpretation[J].Computers and Geotechnics,2011,38(5):683-696.
    [4]PIRIYAKUL K,HAEGEMAN W.Stiffness anisotropy of Boom clay[C]//17th International Conference on Soil Mechanics and Geotechnical Engineering.[S.l.]:IOSPress,2009.
    [5]DEHANDSCHUTTER B,VANDYCKE S,SINTUBIN M,et al.Brittle fractures and ductile shear bands in argillaceous sediments:Inferences from Oligocene Boom clay(Belgium)[J].Journal of Structural Geology,2005,27(6):1095-1112.
    [6]YU H D,CHEN W Z,LI X L,et al.A transversely isotropic damage model for Boom clay[J].Rock Mechanics and Rock Engineering,2014,47(1):207-219.
    [7]DEHANDSCHUTTER B,VANDYCKE S,SINTUBINM,et al.Microfabric of fractured Boom clay at depth:Acase study of brittle-ductile transitional clay behaviour[J].Applied Clay Science,2004,26(1):389-401.
    [8]HUECKEL T,BALDI G.Thermoplasticity of saturated clays:Experimental constitutive study[J].Journal of Geotechnical Engineering,1990,116(12):1778-1796.
    [9]BALDI G,HUECKEL T,PEANO A,et al.Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials(volume 2)[R].Luxembourg:Commission of the European Communities,1991.
    [10]GRAHAM J,TANAKA N,CRILLY T,et al.Modified Cam-clay modelling of temperature effects in clays[J].Canadian geotechnical journal,2001,38(3):608-621.
    [11]FRAN?OIS B,LALOUI L.ACMEG-TS:A constitutive model for unsaturated soils under non-isothermal conditions[J].International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(16):1955-1988.
    [12]FRANCOIS B,LALOUI L,LAURENT C.Thermo-hydromechanical simulation of ATLAS in situ large scale test in Boom clay[J].Computers and Geotechnics,2009,36(4):626-640.
    [13]姚仰平,杨一帆,牛雷.考虑温度影响的UH模型[J].中国科学:技术科学,2011,41(2):158-169.YAO Yang-ping,YANG Yi-fan,NIU Lei.UH model considering temperature effects[J].Scientia Sinica(Technologica),2011,41(2):158-169.
    [14]姚仰平,万征,杨一帆,等.饱和黏土不排水剪切的热破坏[J].岩土力学,2011,32(9):2561-2569.YAO Yang-ping,WAN Zheng,YANG Yi-fan,et al.Thermal failure for saturated clay under undrained condition[J].Rock and Soil Mechanics,2011,32(9):2561-2569.
    [15]ROBINET J C,RAHBAOUI A,PLAS F,et al.Aconstitutive thermomechanical model for saturated clays[J].Engineering Geology,1996,41(1):145-169.
    [16]CUI Y J,SULTAN N,DELAGE P.A thermomechanical model for saturated clays[J].Canadian Geotechnical Journal,2000,37(3):607-620.
    [17]ABUEL-NAGA H M,BERGADO D T,BOUAZZA A,et al.Volume change behaviour of saturated clays under drained heating conditions:Experimental results and constitutive modeling[J].Canadian Geotechnical Journal,2007,44(8):942-956.
    [18]ZHANG S,LENG W,ZHANG F,et al.A simple thermo-elastoplastic model for geomaterials[J].International Journal of Plasticity,2012,34:93-113.
    [19]龚哲,陈卫忠,于洪丹,等.基于下加载面概念的饱和黏土温度-应力耦合弹塑性模型[J].岩石力学与工程学报,2015,34(7):1392-1401.GONG Zhe,CHEN Wei-zhong,YU Hong-dan,et al.Thermo-elasto-plastic model for saturated clay based on the concept of subloading surface[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1392-1401.
    [20]GENS A,VAUNAT J,GARITTE B,et al.In situ behaviour of a stiff layered clay subject to thermal loading:Observations and interpretation[J].Géotechnique,2007,57(2):207-228.
    [21]HOXHA D,JIANG Z,HOMAND F,et al.Impact of THM constitutive behavior on the rock-mass response:Case of HE-D experiment in Mont-Terri underground rock laboratory[J].EUROCK 2006:Multiphysics Coupling and Long Term Behaviour in Rock Mechanics,2006:199-204.
    [22]于洪丹.Boom clay渗流-应力耦合长期力学特性研究[D].武汉:中国科学院武汉岩土力学研究所,2010.YU Hong-dan.Long-term hydro-mechanical coupled behaviour of Belgium Boom clay[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2010.
    [23]龚哲.Boom clay温度-渗流-应力耦合长期力学特性研究[D].武汉:中国科学院武汉岩土力学研究所,2015.GONG Zhe.Long-term thermo-hydro-mechanical coupled behaviour of Belgium Boom clay[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2015.
    [24]MA Y S,CHEN W Z,YU H D,et al.Variation of the hydraulic conductivity of Boom clay under various thermal-hydro-mechanical conditions[C]//Clay in Natural and Engineered Barriers for Radioactive Waste Confinement,6th International Conference.Brussels:[s.n.],2015.
    [25]贾善坡.Boom clay泥岩渗流-应力-损伤耦合流变模型、参数反演与工程应用[D].武汉:中国科学院武汉岩土力学研究所,2009.JIA Shan-po.Long term hydro-mechanical behaviour of boom clay[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2009.
    [26]NECHNECH W,MEFTAH F,REYNOUARD J M.An elasto-plastic damage model for plain concrete subjected to high temperatures[J].Engineering Structures,2002,24(5):597-611.
    [27]HAJIABDOLMAJID V,KAISER P K,MARTIN C D.Modelling brittle failure of rock[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):731-741.
    [28]龚哲,陈卫忠,于洪丹,等.Boom clay热-力耦合弹塑性损伤模型研究[J].岩土力学,2016,37(9):2433-2442.GONG Zhe,CHEN Wei-zhong,YU Hong-dan,et al.Athermo-mechanical coupled elastoplastic damage model for Boom clay[J].Rock and Soil Mechanics,2016,37(9):2433-2442.
    [29]CARMAN P C.Permeability of saturated sands,soils and clays[J].Journal of Agricultural Science,1939,29(2):262-273.
    [30]DELAGE P,SULTAN N,CUI Y J.On the thermal consolidation of Boom clay[J].Canadian Geotechnical Journal,2000,37(2):343-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700