用户名: 密码: 验证码:
怀山药微波冻干过程的水分扩散特性及干燥模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water Diffusion Characteristics and Microwave Vacuum Freeze-Drying Modelling of Chinese Yam(Dioscorea opposite) Tubers
  • 作者:段柳柳 ; 段续 ; 任广跃
  • 英文作者:DUAN Liuliu;DUAN Xu;REN Guangyue;College of Food and Bioengineering, Henan University of Science and Technology;
  • 关键词:微波真空冷冻干燥 ; 低场核磁共振 ; 水分扩散特性 ; 干燥模型
  • 英文关键词:microwave vacuum freeze-drying;;low-field nuclear magnetic resonance;;moisture diffusion characteristics;;drying model
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:河南科技大学食品与生物工程学院;
  • 出版日期:2019-01-15
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.590
  • 基金:国家自然科学基金面上项目(31671907);; 河南省高校科技创新团队支持计划项目(16IRTSTHN009);; 河南省自然科学基金项目(182300410062)
  • 语种:中文;
  • 页:SPKX201901004
  • 页数:8
  • CN:01
  • ISSN:11-2206/TS
  • 分类号:31-38
摘要
为探究怀山药干燥过程中的水分扩散特性,以怀山药为原料,使用微波真空冷冻干燥技术进行干燥,同时采用低场核磁共振的横向弛豫时间(T_2)反演谱分析怀山药切片在干燥过程中内部水分的变化,并结合有效水分扩散系数、水分含量、干燥速率的变化规律对微波真空冷冻干燥过程中怀山药的内部水分扩散特性进行分析。结果表明:干燥过程中水分由自由度高向自由度低的方向迁移;不同微波功率(1.5~4.4 W)下怀山药干燥过程的有效水分扩散系数变化范围在1.129×10~(-9)~5.439×10~(-9) m~2/s之间,随着微波功率的增大,有效水分扩散系数升高,水分扩散迁移的速度增大,非结合水向结合水方向转化逐渐增多。采用Page、Newton等模型与实验数据进行拟合,结果表明Page拟合度较高,R~2大于0.99,可以较好地对怀山药微波真空冷冻干燥过程进行预测和控制。本实验为怀山药干燥过程的水分实时监测及实现精准干燥提供了理论依据。
        This study was undertaken in order to explore the water diffusion characteristics of Chinese yam tubers during microwave vacuum freeze-drying. Low field nuclear magnetic resonance(LF-NMR) was used to analyze water distribution change during the drying process. In addition, changes in water effective diffusion coefficient, water content and drying rate were measured. The results showed that moisture migration from high degree of freedom to low degree of freedom occurred during the drying process. Water effective diffusion coefficient increased from 1.129 × 10~(-9) to 5.439 × 10~(-9) m~2/s as the microwave power increased from 1.5 to 4.4 W. Similarly, moisture diffusion coefficient, water migration rate and the amount of unbound water converted to bound water increased with increasing microwave power. The Page and Newton models were fitted to the experimental data. Our comparative evaluation showed that the Page model could better describe the drying process with excellent goodness of fit and R~2 of greater than 0.99. This study can provide a theoretical basis for real-time monitoring of moisture in the drying process of Chinese yam tubers.
引文
[1]赵国华,王赟,李志孝,等.山药多糖的免疫调节作用[J].营养学报,2002,24(2):187-188.DOI:10.3321/j.issn:0512-7955.2002.02.018.
    [2]王挥,杨志伟.木菠萝真空冷冻干燥和热风干燥加工特性研究[J].轻工科技,2012,28(6):12-13.DOI:10.3969/j.issn.1003-2673.2012.06.008.
    [3]CUI Zhengwei,LI Chunyang,SONG Chunfang,et al.Combined microwave-vacuum and freeze drying of carrot and apple chips[J].Drying Technology,2008,26(12):1517-1523.DOI:10.1080/07373930802463960.
    [4]钱革兰,张琦,崔政伟.真空微波和冷冻干燥组合降低胡萝卜片的干燥能耗[J].农业工程学报,2011,27(6):387-392;399.DOI:10.3969/j.issn.1005-1295.2011.03.005.
    [5]LITVIN S,MANNHEIM C H,MILTZ J.Dehydration of carrots by a combination of freeze drying,microwave heating and air or vacuum drying[J].Journal of Food Engineering,1998,36(1):103-111.DOI:10.1016/S0260-8774(98)00054-5.
    [6]邵小龙,李云飞.用低场核磁研究烫漂对甜玉米水分布和状态影响[J].农业工程学报,2009,25(10):302-306.DOI:10.3969/j.issn.1002-6819.2009.10.054.
    [7]MARIETTE F.Investigations of food colloids by NMR and MRI[J].Current Opinion in Colloid and Interface Science,2009,14(3):203-211.DOI:10.1016/j.cocis.2008.10.006.
    [8]崔宏博,薛勇,宿玮,等.即食南美白对虾贮藏过程中水分状态的变化研究[J].中国食品学报,2012,12(6):198-203.DOI:10.3969/j.issn.1009-7848.2012.06.029.
    [9]栗俊广,柳红莉,何菲,等.冰温和冷鲜贮藏对鸡肉肌原纤维蛋白凝胶性能和水分状态的影响[J].食品科学,2017,38(19):236-240.DOI:10.7506/spkx1002-6630-201719038.
    [10]何承云,林向阳,张远.核磁共振技术研究馒头水分的迁移变化[J].食品科学,2009,30(13):143-146.DOI:10.3321/j.issn:1002-6630.2009.13.034.
    [11]TANANUWONG K,REID D S.DSC and NMR relaxation studies of starch-water interactions during gelatinization[J].Carbohydrate Polymers,2004,58(3):345-358.DOI:10.1016/j.carbpol.2004.08.003.
    [12]张绪坤,祝树森,黄俭花,等.用低场核磁分析胡萝卜切片干燥过程的内部水分变化[J].农业工程学报,2012,28(22):282-287.DOI:10.3969/j.issn.1002-6819.2012.22.039.
    [13]李娜,李瑜.利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J].食品科学,2016,37(23):84-88.DOI:10.7506/spkx1002-6630-201623014.
    [14]任广跃,段续,李晖,等.怀山药微波真空干燥模型的建立[J].食品与生物技术学报,2012,31(10):1069-1073.DOI:10.3969/j.issn.1673-1689.2012.10.010.
    [15]DUAN D X,REN G Y,ZHU W X.Microwave freeze drying of apple slices based on the dielectric properties[J].Drying Technology,2012,30(5):535-541.DOI:10.1080/07373937.2011.648783.
    [16]闫泽华,李书华,张仲欣.大枣真空干燥特性及干燥模型分析[J].粮食科技与经济,2017,42(1):57-59.DOI:10.16465/j.gste.cn431252ts.20170116.
    [17]LIU Y H,SUN Y,MIAO S,et al.Drying characteristics of ultrasound assisted hot air drying of Flos Lonicerae[J].Journal of Food Science and Technology,2015,52(8):4955-4964.DOI:10.1007/s13197-014-1612-3.
    [18]曾令彬,赵思明,熊善柏,等.风干白鲢的热风干燥模型及内部水分扩散特性[J].农业工程学报,2008,24(7):280-283.DOI:10.3321/j.issn:1002-6819.2008.07.059.
    [19]李春,张录达,任发政,等.利用低场核磁共振研究冷却条件对猪肉保水性的影响[J].农业工程学报,2012,28(23):243-249.DOI:10.3969/j.issn.1002-6819.2012.23.032.
    [20]MOHAPATRA D,RAO S P.A thin layer drying model of parboiled wheat[J].Journal of Food Engineering,2005,66(4):513-518.DOI:10.1016/j.jfoodeng.2004.04.023.
    [21]SIMAL S,MULET A,TARRAZO J,et al.Drying model for green peas[J].Food Chemistry,1996,55(2):121-128.DOI:10.1016/0308-8146(95)00074-7.
    [22]BAINI R,LANGRISH T A G.Choosing an appropriate drying model for intermittent and continuous drying of bananas[J].Journal of Food Engineering,2007,79(1):330-343.DOI:10.1016/j.jfoodeng.2006.01.068.
    [23]BERTRAM H C,PURSLOW P P,ANDERSEN H J.Relationship between meat structure,water mobility,and distribution:a low-field nuclear magnetic resonance study[J].Agriculture and Food Chemistry,2002,50(4):824-829.DOI:10.1021/jf010738f.
    [24]姜晓文,韩剑众.生鲜猪肉持水性的核磁共振研究[J].食品工业科技,2009(7):128-130;133.DOI:10.13386/j.issn1002-0306.2009.07.047.
    [25]杜利平,崔莉,赵恒强,等.基于低场核磁技术的不同花期金银花红外干燥过程中的水分变化[J].现代食品科技,2017,33(9):189-194;201.DOI:10.13982/j.mfst.1673-9078.2017.9.028.
    [26]XIAO H W,YAO X D,LIN H,et al.Effect of SSB(superheated steam blanching)time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices[J].Journal of Food Process Engineering,2012,35(3):370-390.DOI:10.1111/j.1745-4530.2010.00594.x.
    [27]王海鸥,扶庆权,陈守江,等.不同护色预处理对牛蒡片真空冷冻干燥特性的影响[J].食品科学,2017,38(1):86-91.DOI:10.7506/spkx1002-6630-201701014.
    [28]王妮,杨薇,刁卓超.莴笋渗透脱水有效扩散系数研究[J].食品工业科技,2012,33(1):131-135.DOI:10.13386/j.issn1002-0306.2012.01.114.
    [29]孙照斌.竹材热压干燥过程中的水分扩散研究[J].木材工业,2006,20(5):27-29.DOI:10.3969/j.issn.1001-8654.2006.05.009.
    [30]JAIN D,PATHARE P B.Study the drying kinetics of open sun drying of fish[J].Journal of Food Engineering,2007,78(4):1315-1319.DOI:10.1016/j.jfoodeng.2005.12.044.
    [31]ERTEKIN C,YALDIZ O.Drying of eggplant and selection of a suitable thin layer drying model[J].Journal of Food Engineering,2004,63(3):349-359.DOI:10.1016/j.jfoodeng.2003.08.007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700