用户名: 密码: 验证码:
不同介质中海流机叶片的模态试验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EXPERIMENTAL MODAL ANALYSIS OF BLADES IN DIFFERENT MEDIA
  • 作者:韩巧丽 ; 邢为特 ; 李汪灏 ; 张正 ; 郭珊珊
  • 英文作者:Han Qiaoli;Xing Weite;Li Wanghao;Zhang Zheng;Guo Shanshan;College of Energy and Transportation Engineering,Inner Mongolia Agricultural University;College of Mechanical and Electrical Engineering,Inner Mongolia Agricultural University;
  • 关键词:海流 ; 模态分析 ; ; 空气 ; 固有频率 ; 叶片
  • 英文关键词:ocean currents;;modal analysis;;water;;air;;natural frequency;;blade
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:内蒙古农业大学能源与交通工程学院;内蒙古农业大学机电工程学院;
  • 出版日期:2019-01-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:内蒙古自治区自然科学基金(2017MS0515)
  • 语种:中文;
  • 页:TYLX201901040
  • 页数:6
  • CN:01
  • ISSN:11-2082/TK
  • 分类号:291-296
摘要
采用试验模态法对海流机叶片进行模态分析,分别在空气和水中对其进行模态试验,发现叶片在水中比在空气中1阶固有频率降低了72%、阻尼比降低了66%,2阶固有频率降低了69%、阻尼比降低了53%,不同介质对叶片节线的位置无影响。在水中额定工况下转轮旋转频率为2.5 Hz,而叶片在水中的1阶固有频率为5.724 Hz,两者差值较大,所以该海流机组在额定转速运行时发生共振的几率较小。采用试验法研究海流机叶片在不同介质中的模态参数,建立海流机叶片结构设计与模态试验测试在水和空气2种不同介质中的联系,为海流机叶片设计和优化提供理论依据。
        Modal analysis on the blades of the marine current turbine is carried out on the way of modal test,and the modal tests are implemented in air and in water respectively. It is found that the first order natural frequency of the blade in water is decreased by 72% than that in air and the damping ratio decreased by 66%. The second order natural frequency is decreased by 69% and the damping ratio decreased by 53%. Different media have no effect on the position of the blade pitch line. The rotation frequency of the rotor under rated condition in water is 2.5 Hz,while the first order natural frequency of the blade in water is 5.724 Hz. The difference between the two cases is relatively large. So the marine current turbine is less likely to resonate at rated speed. In this article,the modal parameters of the current turbine bladesare studied in different media by the method test. The relationship between structure design and modal test of the marine current turbine blade under two different media is established. It provides a theoretical basis for the design and optimization of the marine current turbine blades.
引文
[1]田应元,张云海,任翀.海流发电发展方向及技术路线思考[J].能源工程,2010,(1):9—14.[1] Tian Yingyuan,Zhang Yunhai,Ren Chong. Researchon the trend and technical line of marine currentgeneration[J]. Energy Engineering,2010,(01):9—14.
    [2]罗竹梅.海流能发电涡激振动驱动的水动力特性及能量获取研究[D].昆明:昆明理工大学,2016.[2] Luo Zhumei. Research on hydrodynamic characteristicsand harvesting energy in ocean current power generationdrived by VIV[D]. Kunming:Kunming University ofScience and Technology,2016.
    [3]辛小鹏.水平轴海流能发电机械水动力性能的研究[D].杭州:浙江大学,2010.[3] Xin Xiaopeng. Study on hydrodynamic performance ofhorizontal marine current turbine[D]. Hangzhou:Zhejiang University,2010.
    [4]赵伟国,邵雪明,李伟.基于BEM理论的水平轴海流机设计[J].水力发电学报,2011,30(4):208—213.[4] Zhao Weiguo,Shao Xueming,Li Wei. Hydrodynamicdesign of horizontal-axis marine current turbine based onBEM theroy[J]. Journal of Hydroelectric Engineering,2011,30(4):208—213.
    [5]黄光胜.定桨距水平轴海流机叶轮的水动力外形设计及性能评价[D].杭州:浙江大学,2015[5] Huang Guangsheng. Hydrodynamic shape design andperformance evaluation of fixed-pitch HAMCT turbinewheel[D]. Hangzhou:Zhejiang University,2015.
    [6]李伟.水平轴螺旋桨式海流能发电技术研究[A].中国可再生能源学会海洋能专业委员会.中国可再生能源学会海洋能专业委员会成立大会暨第一届学术讨论会论文集[C].杭州:中国可再生能源学会海洋能专业委员会,2008:10.[6] Li Wei. Research on horizontal axis propeller type seacurrent energy generation technology[A]. ChinaRenewable Energy Society marine energy SpecializedCommittee. China Renewable Energy Society, theSpecialized Committee Establishment Conference andthe First Academic Symposium Papers[C],Hangzhou:China Renewable Energy Society marine energySpecialized Committee,2008:10.
    [7]林勇刚,李伟,刘宏伟,等.水下风车海流能发电技术[J].浙江大学学报:工学版,2008,42(7):1242—1246.[7] Lin Yonggang,Li Wei,Liu Hongwei,et al. Oceancurrent power generation technology for underwaterturbine[J]. Journal of Zhejiang University:EngineeringEdition,2008,42(7):1242—1246.
    [8]徐学涛.水平轴潮流能发电机械叶片设计及特性分析[D].杭州:浙江大学,2012[8] Xu Xuetao. Design and characteristic analysis on bladesof horizontal axis marine current turbine’mechanics[D]. Hangzhou:Zhejiang University,2012
    [9]李仁年,刘有亮.大型风力机叶片铺层及模态分析[J].太阳能学报,2015,36(1):49—53.[9] Li Rennian,Liu Youliang. Ply and Modal Analysis forthe Large Wind Turbine Blade[J]. Acta Energiae SolarisSinica,2015,36(1):49—53.
    [10]陈文朴,李春,叶舟,等.基于气动弹性剪裁的风力机叶片模态分析[J].热能动力工程,2016,31(9):52—57,133—134.[10] Chen Wenpu,Li Chun,Ye Zhou,et al. Analysis of themodal of a blade in a wind turbine based on theaeroelastic tailoring[J]. Journal of Engineering forThermal Energy and Power,2016,31(9):52—57,133—134.
    [11]武玉龙,李春,高伟. 3 MW风力机叶片设计建模与模态分析[J].机械研究与应用,2013,26(3):4—7.[11] Wu Yulong,Li Chun,Gao Wei. Design and modalanalysis for 3 MW wind turbine blade[J]. MechanicalResearch&Application,2013,26(3):4—7.
    [12]王旭,罗凯.流固耦合的水轮机转轮静应力仿真与模态分析[J].水力发电,2015,41(12):72—75.[12] Wang Xu,Luo Kai. Static stress simulation and modalanalysis for the runner of hydro turbine based on fluid-solid coupling[J]. Water Power,2015,41(12):72—75.
    [13]刘庆茂.复杂结构水下模态试验研究[J].导弹与航天运载技术,1997,(4):25—31.[13] Liu Qingmao. Modal test investigation of complex bodystructure in water[J]. Missiles and Space Vehicles,1997,(4):25—31.
    [14]陈明,钱家昌,曹为午.不同介质中多舱段复杂壳体的振动模态特性研究[J].噪声与振动控制,2009,29(2):1—5,87.[14] Chen Ming, Qian Jiachang, Cao Weiwu. Study ofvibration mode characteristic of multi-cabin shell indifferent media[J]. Noise and Vibration Control,2009,29(2):1—5,87.
    [15]赵军,单晓亮,樊晓波.水下航行器燃气涡轮机叶轮模态分析[J].鱼雷技术,2011,19(3):214—217.[15] Zhao Jun,Shan Xiaoliang,Fan Xiaobo. Modal analysisof gas turbine impeller for underwater vehicle[J].Torpedo Technology,2011,19(3):214—217.
    [16]吴少龙.水平轴海流能发电机组关键部件载荷分析及其试验研究[D].杭州:浙江大学,2013.[16] Wu Shaolong. Load analysis and experimental study ofhorizontal axis marine current turbine[D]. Hangzhou:Zhejiang University,2013.
    [17]何煜平.水平轴海流机叶片与漂浮式支撑的设计与研究[D].上海:上海交通大学,2013.[17] He Yuping. Designing and research on the blades andfloating support structure of a horizontal-axis currentturbine[D]. Shanghai:Shanghai Jiao Tong University,2013.
    [18] Gauthier J P, Giroux A M, Etienne S, et al. Anumerical method for the determination of flow-induceddamping in hydroelectric turbines[J]. Journal of Fluids&Structures,2017,69:341—354.
    [19]马剑龙,汪建文,董波,等.风力机风轮低频振动特性的试验模研究[J].振动与冲击,2013,32(16):164—170.[19] Ma Jianlong, Wang Jianwen, Dong Bo, et al.Experimental modal analysis on low-frequency vibrationcharacteristics of wind turbine[J]. Journal of Vibrationand Shock,2013,32(16):164—170.
    [20]汪建文,闫建校,刘金鹏,等.多叶片风轮的试验模态测试分析[J].太阳能学报,2008,29(12):1460—1464.[20] Wang Jianwen, Yan Jianxiao, Liu Jinpeng, et al.Experimental modal analysis of multi-blade wind turbine[J]. Acta Energiae Solaris Sinica,2008,29(12):1460—1464.
    [21]方道元,张挺.变黏性Navier-Stokes州:浙江大学出版社,2008.[21] Fang Daoyuan,Zhang Ting. Variable viscous Navier-Stokes equations[M]. Hangzhou:Zhejiang UniversityPress,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700