用户名: 密码: 验证码:
已建区排水管网评估及多尺度分区改造策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of drainage network and multi-scale zoning optimization strategy in a built-up area
  • 作者:徐袈檬 ; 潘兴瑶 ; 李永坤 ; 鞠琴 ; 王丽晶 ; 李尤 ; 张宇航
  • 英文作者:XU Jiameng;PAN Xingyao;LI Yongkun;JU Qin;WANG Lijing;LI You;ZHANG Yuhang;Beijing Unconventional Water Resources Development and Utilization and Water Saving Engineering Technology Research Center,Beijing Water Science and Technology Institute;College of Hydrology and Water Resources,Hohai University;
  • 关键词:管网排水能力 ; InfoWorks ; ICM模型 ; 参数率定及模型验证 ; 城市降雨-产汇流模拟 ; 多尺度分区改造策略 ; 已建区
  • 英文关键词:network drainage capacity;;InfoWorks ICM model;;model calibration and validation;;urban rainfall runoff simulation;;multi-scale zoning optimization strategy;;built-up area
  • 中文刊名:NSBD
  • 英文刊名:South-to-North Water Transfers and Water Science & Technology
  • 机构:北京市水科学技术研究院北京市非常规水资源开发利用与节水工程技术研究中心;河海大学水文水资源学院;
  • 出版日期:2019-01-22 09:08
  • 出版单位:南水北调与水利科技
  • 年:2019
  • 期:v.17;No.101
  • 基金:国家“十三五”水专项课题(2017ZX07103-002);; 北京市科技新星计划(Z161100004916085)~~
  • 语种:中文;
  • 页:NSBD201902015
  • 页数:10
  • CN:02
  • ISSN:13-1334/TV
  • 分类号:127-135+143
摘要
为评估已建区现状排水管网情况并以问题为导向提出针对性的多尺度分区管网排水能力提升优化策略,以北京市东城区为例,构建基于InfoWorks ICM的城市综合流域排水模型,选用两场实测降雨分别进行参数率定及模型验证,结果表明模型具有较高的精度与可靠性。在此基础上,利用该模型对1a、3a、5a、10a四种不同设计重现期、历时1h降雨情景下的排水管网排水能力进行模拟,分三个尺度对研究区域模拟结果的分析如下:(1)城市尺度的管网排水能力不足1a一遇、1~3a一遇、3~5a一遇、5~10a一遇、10a一遇的管线长度比例分别为52%、10%、4%、6%、29%;(2)地块尺度功能分区排水能力排序为:公园绿地≥居民小区>商务行政办公区>商业区;(3)道路尺度的主次干道管线排水能力不足1a一遇、1~3a一遇、3~5a一遇、5~10a一遇、10a一遇的管线长度比例分别为38%、9%、4%、7%、42%。针对不同尺度下排水管网排水能力的现状评估结果,诊断并分析排水能力不足的问题及成因,以期通过系统性的管网现状评估及优化方案,为国内其他老城区的管网排水能力提升提供一套适用性的优化改造策略。
        In order to evaluate the situation of drainage network in a built-up area and propose a targeted multi-scale zoning optimization strategy for improving drainage capacity of pipelines,this paper constructed an urban integrated drainage model with InfoWorks ICM for the Dongcheng District of Beijng.The model was calibrated and validated with two measured rainfall event data.The results showed that the model had a high accuracy and was reliable.The model was then used to simulate the drainage capacity of the drainage network under four different rainfall scenarios of the recurrence periods of 1,3,5 and 10 years.The simulation results of the study area were analyzed in three scales:1.The proportions of pipeline lengths of urban scale pipeline networks with less than 1 year,1-3 years,3-5 years,5-10 years and 10 years were 52%,10%,4%,6% and 29% respectively;2.The drainage capacity of the functional zoning on the land was:park and green space≥residential area>commercial and administrative office area>business area;3.The proportions of pipeline length of main and secondary roads with less than 1 year,1-3 years,3-5 years,5-10 years and 10 years were 38%,9%,4%,7% and 42%,respectively.Based on the evaluation results of drainage capacity of drainage pipe network under different scales,the problems and causes of insufficient drainage capacity were diagnosed and analyzed,and a suitability optimization strategy for improving drainage capacity was expected for other old urban areas in China through systematic assessment and optimization of the pipeline network.
引文
[1]张建云,王银堂,贺瑞敏,等.中国城市洪涝问题及成因分析[J].水科学进展,2016,27(4):485-491.(ZHANG J Y,WANG Y T,HE R M,et al.Urban flood problems and causes in China[J].Progress in Water Science,2016,27(4):485-491.(in Chinese))DOI:10.14042/j.cnki.32.1309.2016.04.001.
    [2]程江,杨凯,刘兰岚,等.上海中心城区土地利用变化对区域降雨径流的影响研究[J].自然资源学报,2010,25(6):914-925.(CHENG J,YANG K,LIU L L,et al.Study on the impact of land use change on regional rainfall and runoff in central Shanghai[J].Journal of Natural Resources,2010,25(6):914-925.(in Chinese))
    [3] HALLEGATTE S,GREEN C,NICHOLLS R J,et al.Future flood losses in major coastal cities[J].Nature Climate Change,2013,3(9):802-806.
    [4]顾孝天,李宁,周扬,等.北京“7·21”暴雨引发的城市内涝灾害防御思考[J].自然灾害学报,2013,22(2):1-6.(GU X T,LI N,ZHOU Y,et al.Reflections on urban waterlogging disaster prevention caused by the July 21rainstorm in Beijing[J].Journal of Natural Disasters,2013,22(2):1-6.(in Chinese))DOI:10.13577/j.jnd.2013.0201.
    [5]胡坚,赵宝康,刘小梅,等.镇江市主城区排水能力与内涝风险评估[J].中国给水排水,2015,31(1):100-103,108.(HU J,ZHAO B K,LIU X M,et al.Drainage capacity and waterlogging risk assessment of Zhenjiang main urban area[J].China Water Supply and Drainage,2015,31(1):100-103,108.(in Chinese))
    [6]朱钢,杨森.精细模型在成都市中心城区排涝规划中的应用[J].中国给水排水,2014,30(15):159-162.(ZHU G,YANG S.Application of fine model in drainage planning of Chengdu central district[J].China Water Supply and Drainage,2014,30(15):159-162.(in Chinese))
    [7]刘小梅,吴思远,云海兰,等.水力模型在排水防涝规划体系中的应用[J].中国给水排水,2017,33(11):133-138.(LIU X M,WU S Y,YUN H L,et al.Application of hydraulic model in drainage and waterlogging control planning system[J].China Water Supply and Drainage,2017,33(11):133-138.(in Chinese))
    [8]周玉文.城市排水(雨水)防涝工程的系统架构[J].给水排水,2015,51(12):1-5.(ZHOU Y W.System structure of urban drainage(rainwater)waterlogging prevention works[J].Water Supply and Drainage,2015,51(12):1-5.(in Chinese))DOI:10.13789/j.cnki.wwe1964.2015.0504.
    [9]住建部出台城市排水防涝综合规划编制大纲[J].给水排水,2013,49(S1):266.(The Ministry of housing has issued an outline for the comprehensive planning of urban drainage and waterlogging prevention,[J].water supply and drainage,2013,49(S1):266.(in Chinese))
    [10]黄国如,王欣,黄维.基于InfoWorks ICM模型的城市暴雨内涝模拟[J].水电能源科学,2017,35(2):66-70,60.(HUANG G R,WANG X,HUANG W.Urban rainstorm and waterlogging simulation based on InfoWorks ICM model[J].Hydropower and Energy Science,2017,35(2):66-70,60.(in Chinese))
    [11]汉京超.应用InfoWorks ICM软件优化排水系统提标方案[J].中国给水排水,2014,30(11):34-38.(HAN J C.Optimizing the drainage system tender raising scheme with InfoWorks ICM software[J].China Water Supply and Drainage,2014,30(11):34-38.(in Chinese))
    [12]张念强,马建明,陆吉康,等.基于多类模型耦合的城市洪水风险分析技术研究[J].水利水电技术,2013,44(7):125-128,133.(ZHANG N Q,MA J M,LU J K,et al.Study on urban flood risk analysis technology based on multi-class model coupling[J].Water Conservancy and Hydropower technology,2013,44(7):125-128,133.(in Chinese))DOI:10.13928/j.cnki.wrahe.2013.07.032.
    [13]解智强,杜清运,高忠,等.GIS与模型技术在城市排水管线承载力评价中的应用[J].测绘通报,2011(12):50-53.(XIE Z Q,DU Q Y,GAO Z,et al.Application of GIS and model technology in the evaluation of urban drainage pipeline bearing capacity[J].Surveying and Mapping Bulletin,2011(12):50-53.(in Chinese))
    [14]周思斯,杜鹏飞,逄勇.城市暴雨管理模型应用研究进展[J].水利水电科技进展,2014,34(6):89-97.(ZHOU S S,DU P F,YI Y.Advances in the application of urban rainstorm management models[J].Progress in Water Conservancy and Hydropower Science and Technology,2014,34(6):89-97.(in Chinese))
    [15]康宏志,郭祺忠,练继建,等.海绵城市建设全生命周期效果模拟模型研究进展[J].水力发电学报,2017,36(11):82-93.(KANG H Z,GUO Q Z,LIAN J J,et al.Research progress on simulation model of life cycle effect of sponge city construction[J].Journal of Hydropower Generation,2017,36(11):82-93.(in Chinese))
    [16]潘兴瑶,李其军,陈建刚,等.城市地区流域洪水过程模拟:以清河为例[J].水力发电学报,2015,34(6):71-80.(PAN X Y,LI Q J,CHEN J G,et al.Flood simulation in urban area basin:Qinghe River as an example[J].Journal of Hydropower Generation,2015,34(6):71-80.(in Chinese))
    [17]程涛,徐宗学,宋苏林.济南市海绵城市建设兴隆示范区降雨径流模拟[J].水力发电学报,2017,36(6):1-11.(CHENG T,XU Z X,SONG S L.Rainfall and runoff simulation in Xinglong demonstration area of sponge city construction in Jinan[J].Journal of Hydropower Generation,2017,36(6):1-11.(in Chinese))
    [18]李建勇.Infoworks ICM在城市排水系统分析中的应用[J].中国给水排水,2014,30(8):21-24.(LI J Y.Application of infoworks ICM in urban drainage system analysis[J].China Water Supply and Drainage,2014,30(8):21-24.(in Chinese))
    [19]王诗婧.基于Infoworks ICM的城市排水管网排水能力评估[J].绿色科技,2018(18):156-159.(WANG S J.Assessment of drainage capacity of urban drainage network based on Infoworks ICM[J].Green Science and Technology,2018(18):156-159.(in Chinese))DOI:10.16663/j.cnki.lskj.2018.18.056.
    [20]郭芝瑞,崔建国,张峰,等.基于Infoworks ICM的城市排水调蓄池位置选择[J].给水排水,2016,52(2):49-52.(GUO Z R,CUI J G,ZHANG F,et al.Location selection of urban drainage reservoir based on Infoworks ICM[J].Water Supply and Drainage,2016,52(2):49-52.(in Chinese))DOI:10.13789/j.cnki.wwe1964.2016.0043.
    [21]张练,王晓晨,赵新华.基于排水模型的城区雨水径流削减潜力分析[J].中国农村水利水电,2015(4):38-41,46.(ZHANG L,WANG X C,ZHAO X H.Potential analysis of rainwater runoff reduction in urban area based on drainage model[J].Rural Water Conservancy and Hydropower in China,2015(4):38-41,46.(in Chinese))
    [22]郭磊,姚双龙,李玢,等.基于水力模型的下凹式立交桥桥区雨水泵站运行优化[J].给水排水,2014,40(3):102-104.(GUO L,YAO S L,LI F,et al.Optimization of rainwater pumping station operation in down-concave overpass area based on hydraulic model[J].Water Supply and Drainage,2014,40(3):102-104.(in Chinese))DOI:10.13789/j.cnki.wwe1964.2014.0025.
    [23]吕放放,胡俊,卢爱国,等.北京某下凹桥区排水系统建模研究[J].中国给水排水,2014,30(7):103-108.(LYU F F,HU J,LU A G,et al.Modeling of drainage system in Xia Aoqiao District,Beijing[J].Water Supply and Drainage,China,2014,30(7):103-108.(in Chinese))
    [24]钱海平,陆敏博,韩素华.城市雨水管道排水能力影响因素分析——以苏州市为例[J].净水技术,2016,35(2):80-83.(QIAN H P,LU M B,HAN S H.Analysis of the influencing factors on the drainage capacity of urban rainwater pipeline:A case study of Suzhou City[J].Water Purification Technology,2016,35(2):80-83.(in Chinese))DOI:10.15890/j.cnki.jsjs.2016.02.015.
    [25]王溯,李田,冯沧,等.排水系统地下水渗入量的水力学模型辅助评估[J].中国给水排水,2010,26(10):13-18.(WANG S,LI T,FENG C,et al.Hydraulic model aided assessment of groundwater infiltration into drainage system[J].Water Supply and Drainage,China,2010,26(10):13-18.(in Chinese))
    [26]郑敬伟,刘舒,胡昌伟.流域洪水数字模型标准化研究[J].河海大学学报(自然科学版),2009,37(5):534-538.(ZHENG J W,LIU S,HU C W.Study on standardization of watershed flood digital model[J].Journal of Hehai University(Natural Science Edition),2009,37(5):534-538.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700