用户名: 密码: 验证码:
锡林河流域植被叶面积指数时空变化特征及其对地形因子的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal Variations of Vegetation Leaf Area Index and Its Response to Topographical Factors in Xilin River Basin
  • 作者:段利民 ; 李玮 ; 罗艳云 ; 刘廷玺 ; Buren ; Scharaw ; 于长翔
  • 英文作者:DUAN Limin;LI Wei;LUO Yanyun;LIU Tingxi;BUREN Scharaw;YU Changxiang;Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University;Inner Mongolia Water Resource Protection and Utilization Key Laboratory;Application Center for System Technologies,Fraunhofer IOSB;Tongliao Bureau of Soil and Water Conservation;
  • 关键词:植被指数 ; 地形因子 ; 转移矩阵 ; 趋势分析
  • 英文关键词:vegetation index;;topographical factors;;transition matrix;;trend analysis
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:内蒙古农业大学水利与土木建筑工程学院;内蒙古自治区水资源保护与利用重点实验室;Application Center for System Technologies,Fraunhofer IOSB;通辽市水土保持局;
  • 出版日期:2019-04-23
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.134
  • 基金:国家自然科学基金青年基金(51509131);; 国家国际科技合作专项(2015DFA00530);; 内蒙古自治区自然科学资助项目(2015BS0514);; 内蒙古自治区高等学校科学研究项目(NJZY064);; 教育部创新团队发展计划(IRT_17R60);; 科技部重点领域创新团队(2015RA4013)资助
  • 语种:中文;
  • 页:STBY201903036
  • 页数:8
  • CN:03
  • ISSN:61-1272/P
  • 分类号:230-237
摘要
为了摸清欧亚大陆大草原重要的组成部分锡林河流域在外界环境和人类活动干扰下植被的时空变异规律及其与地形因子的响应关系,利用遥感影像数据及基于大气阻抗植被指数(ARVI)的统计模型,反演了1985—2015年4个典型代表年份的LAI,从长时间尺度上分析了LAI的时空变化特征以及地形因子对其空间分布格局的影响。结果表明:近30 a,锡林河流域LAI总体呈上升趋势,多年平均值为0.8~1.5,从上游至下游逐渐降低。植被恢复状况空间差异明显,主要发展态势为恢复。LAI在0.78~0.82,0.82~0.86所占面积比例随着海拔、坡度的升高而降低,在东南方向上的面积占比大于其他方向;LAI在0.92~1.5,1.5~3.0所占面积比例随着海拔、坡度的升高而增大,在西、西南方向上的面积占比大于其他方向。高程对LAI的直接影响效应为0.438,远大于坡度和坡向对LAI的影响。本研究可为草原型流域陆面过程及生态水文研究提供理论基础和科学依据,对于天然生态系统的健康维持、退化生态系统的恢复重建等也具有一定的参考价值。
        Xilin River Basin is a main component of Eurasia steppe land, whereas the vegetation heterogeneity is noticeable affected by external environment and human activities. Vegetation leaf area index(LAI) is the key parameter which decides the exchanges of substance and energy between steppe ecosystem and atmosphere, and can directly describe the growth status of vegetation. Remote sensing and statistical model based on atmospherically resistant vegetation index(ARVI) were applied to retrieve the LAI of 4 typical years of 1985—2015. The spatiotemporal variations of LAI and its spatial distribution affected by topographical factors were analyzed. The results indicated that:(1) in recent 30 years, the LAI showed the increasing trend with average annual mean value of 0.8 to 1.5, and decreased from upstream to downstream;(2) the spatial heterogeneity of vegetation restoration was obvious, the main development trend was restoration;(3) the area percentages of LAI ranging from 0.78 to 0.82 and from 0.82 to 0.86 decreased with the increasing of altitude and slope, and the proportion of the area in the southeast was greater than the other directions; LAIs ranging from 0.92 to 1.5 and from 1.5 to 3.0 increased with the increasing of altitude and slope, and the proportion of the area in the west and southwest was greater than the other directions. The direct effect of elevation on LAI was 0.438, which is far greater than that of slope and aspect. This study provides theoretical and scientific basis for land surface processes and eco-hydrological researches, and also can be used for the healthy maintenance of natural ecosystem as well as the restoration of degraded ecosystem.
引文
[1]Ganopolski A,Kubatzki C,Claussen M,et al.The influence of vegetation-atmosphere-ocean interactionon climate during the mid-holocene[J].Science,1998,280(5371):1916-1919.
    [2]刘洋,刘荣高,陈镜明,等.叶面积指数遥感反演研究进展与展望[J].地球信息科学学报,2013,15(5):734-743.
    [3]Chen J M,Black T A.Defining leaf area index fornonflat leaves[J].Plant Cell&Environment,1992,15(4):421-429.
    [4]Bonan G B.Forest sand climate change:Forcings,feedbacks,and the climate benefits of forests[J].Science,2008,320(5882):1444-1449.
    [5]Michael S,Cohen S,Maseyk K,et al.Long term and seasonal courses of leaf area index in a semi-arid forest plantation[J].Agricultural&Forest Meteorology,2011,151(5):565-574.
    [6]柳艺博,居为民,陈镜明,等.2000-2010年中国森林叶面积指数时空变化特征[J].科学通报,2012,57(16):1435-1445.
    [7]罗先香,张蕊,严登华,等.辽宁双台子河口湿地生态水文模拟与调控[J].地理研究,2011,30(6):1089-1100.
    [8]Myneni R B,Ross J,Asrar G.A review on the theory of photon transport in leaf canopies[J].Agricultural&Forest Meteorology,1989,45(1):1-153.
    [9]Arora V.Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models[J].Reviews of Geophysics,2002,40(2):1-26.
    [10]刘凤山,陶福禄,肖登攀,等.土地覆被变化过程中叶面积指数与降水量对地表能量平衡的贡献-基于SiB2的模拟结果[J].地理研究,2014,33(7):1264-1274.
    [11]Leuning R,Zhang Y Q,Rajaud A,et al.A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the PenmanMonteith equation[J].Water Resources Research,2008,44(10):652-655.
    [12]Zhao M,Running S W.Drought-induced reduction in global terrestrial net primary production from 2000through 2009[J].Science,2010,329(5994):940-943.
    [13]Chen J M.Evaluation of vegetation indices and a modified simple ratio for boreal applications[J].Canadian Journal of Remote Sensing,1996,22(3):229-242.
    [14]庄东英,李卫国,武立权.冬小麦生物量卫星遥感估测研究[J].干旱区资源与环境,2013,27(10):158-162.
    [15]吴国训,阮宏华,李显风,等.基于MODIS反演的2000-2011年江西省植被叶面积指数时空变化特征[J].南京林业大学学报自然科学版,2013,37(1):11-17.
    [16]杨灿灿,吴见,王春,等.基于HJ-1B影像的内蒙古草地叶面积指数反演[J].测绘工程,2015,24(5):29-32.
    [17]郭然.中国草原生态系统生产力、碳储量与固碳潜力研究[D].北京:中国科学院研究生院,2006.
    [18]Yang P W,Tang W B,Zhou H J,et al.Mapping spatial and temporal variations of leaf area index for winter wheat in North China[J].Journal of Integrative Agriculture,2007,6(12):1437-1443.
    [19]Li Z Q,Guo X L.Leaf area index estimation in semiarid mixed grassland by considering both temporal and spatial variations[J].Journal of Applied Remote Sensing,2013,7(1):1-17.
    [20]张宇佳,袁金国,张莎.2002-2011年河北省植被LAI时空变化特征[J].南京林业大学学报:自然科学版,2015,39(1):86-92.
    [21]柳艺博,居为民,朱高龙,等.内蒙古不同类型草地叶面积指数遥感估算[J].生态学报,2011,31(18):5159-5170.
    [22]杨勇帅,李爱农,靳华安,等.中国西南山区GEOV1,GLASS和MODISLAI产品的对比分析[J].遥感技术与应用,2016,31(3):438-450.
    [23]金云翔,徐斌,杨秀春,等.内蒙古锡林郭勒盟草原产草量动态遥感估算[J].中国科学:生命科学,2011,41(12):1185-1195.
    [24]包云,李晓兵,黄玲梅,等.1961-2007年内蒙古降水时空分布[J].干旱区地理,2011,34(1):56-65.
    [25]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003,15(3):58-62.
    [26]Bernstein L S,Jin X,Gregor B,et al.Quick atmospheric correction code:Algorithm description and recent upgrades[J].Optical Engineering,2012,51(11):1-11.
    [27]朱绪超,袁国富,易小波,等.基于Landsat 8OIL影像的塔里木河下游河岸林叶面积指数反演[J].干旱区地理,2014,37(6):1248-1256.
    [28]刘玉琴,沙晋明,余涛,等.基于宽波段和窄波段植被指数的草地LAI反演对比研究[J].遥感技术与应用,2014,29(4):587-593.
    [29]孙小龙,刘朋涛,李平,等.近三十年来锡林郭勒草原植被NDVI指数动态分析[J].中国草地学报,2014,36(6):23-28.
    [30]杭玉玲,包刚,包玉海,等.2000-2010年锡林郭勒草原植被覆盖时空变化格局及其气候响应[J].草地学报,2014,22(6):1194-1204.
    [31]姜晔,毕晓丽,黄建辉,等.内蒙古锡林河流域植被退化的格局及驱动力分析[J].植物生态学报,2010,34(10):1132-1141.
    [32]韩砚君,牛建明,张庆,等.锡林河流域近30年草原植被格局动态及驱动力分析[J].中国草地学报,2014,36(2):70-77.
    [33]常学礼,吕世海,冯朝阳,等.地形对草甸草原植被生产力分布格局的影响[J].生态学报,2015,35(10):3339-3348.
    [34]陈宝瑞,李海山,朱玉霞,等.呼伦贝尔草原植物群落空间格局及其环境解释[J].生态学报,2010,30(5):1265-1271.
    [35]呼延佼奇,肖静,于博威,等.我国自然保护区功能分区研究进展[J].生态学报,2014,34(22):6391-6396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700