用户名: 密码: 验证码:
双向梯形夹芯板柱面弯曲成形回弹分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of springback in cylindrical bending of bi-directional trapezoidal sandwich panels
  • 作者:梁晓波 ; 蔡中义 ; 张曦
  • 英文作者:LIANG Xiao-bo;CAI Zhong-yi;ZHANG Xi;Rolling Forging Institute,Jilin University;
  • 关键词:双向梯形夹芯板 ; 弯曲成形 ; 弹性常数等效 ; 回弹
  • 英文关键词:bi-directional trapezoidal sandwich panel;;bending forming;;elastic constants equivalent;;springback
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:吉林大学辊锻工艺研究所;
  • 出版日期:2019-03-05 11:56
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.429
  • 基金:国家自然科学基金项目(51575231)
  • 语种:中文;
  • 页:CLGC201902019
  • 页数:8
  • CN:02
  • ISSN:11-1800/TB
  • 分类号:142-149
摘要
整体弯曲成形是制造曲面夹芯板高效且经济的方法,其成形特点与回弹预测是重点研究方向。采用结合有限元的半解析法对双向梯形夹芯的力学参数进行推导,获得夹芯等效弹性常数,分析上、下面板不等厚夹芯板柱面弯曲成形时面板与夹芯的变形特点及应力中性层的变化,在此基础上建立夹芯板平面应变弯曲回弹理论计算模型,预测夹芯板弯曲成形的应力分布与回弹,并与数值模拟及多点弯曲成形实验结果进行对比。结果表明:夹芯板回弹量与中厚板十分接近,回弹量较小,易于控制成形精度;理论预测的横截面切向应力与回弹都偏大,其中上面板应力相对误差在2.9%以内,下面板应力相对误差在6.5%以内,下面板纵向中心截面线误差在1.0mm范围内,各项误差均在很小范围内,验证了本工作回弹计算模型的准确性。
        Integral bending is an efficient and economical method to manufacture curved sandwich panels, and its forming characteristics and springback prediction are a major concern. The equivalent elastic constants of bi-directional trapezoidal sandwich were deduced by the semi-analytic approach with finite element, then the deformation characteristics of face sheets and core and the change of the stress neutral layer in the bending forming were analyzed. On this basis, the theoretical calculation model of plane strain bending springback of sandwich panels was established and applied to predict the stress and springback, then compared with the numerical simulation and experimental results of multi-point bending. The results indicate that springback of sandwich panels is small; it is easy to control the forming precision. the theoretical predicted cross section tangential stress and springback are overestimated, the stress relative deviation of the top face sheet is less than 2.9% and the bottom face sheet is less than 6.5%, the error of vertical center cross section line between is within 1.0 mm, all kinds of deviations are in a minor range,so the accuracy of the analytical model is verified.
引文
[1] WELCH D. The sandwich plate system [D]. Glasgow :College of Nautical Studies. 2005.
    [2] ZHOU D, STRONGE W J. Mechanical properties of fibrous core sandwich panels[J]. International Journal of Mechanical Sciences, 2005, 47(4/5):775-798.
    [3] SOROKIN S V. Analysis of wave propagation in sandwich plates with and without heavy fluid loading[J]. Journal of Sound & Vibration, 2004, 271(3):1039-1062.
    [4] HE M, HU W. A study on composite honeycomb sandwich panel structure[J]. Materials & Design, 2008, 29(3):709-713.
    [5] 符定梅, 韩静涛, 刘靖,等. 钢质蜂窝夹芯板的研究进展[J]. 航空精密制造技术, 2004, 40(3):14-15. FU D M, HAN J T, LIU J, et al. Progress of study of honeycomb sandwich steel panel[J]. Aviation Precision Manufacturing Technology, 2004, 40(3):14-15.
    [6] 王兴业. 夹层结构复合材料设计原理及其应用[M]. 北京:化学工业出版社, 2007. WANG X Y. Design principle and application of structural sandwich composite materials [M]. Beijing: Chemical Industry Press, 2007.
    [7] 石姗姗, 陈秉智, 陈浩然,等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959. SHI S S,CHEN B Z, CHEN H R, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica, 2017, 34(9):1953-1959.
    [8] 郑吉良, 彭明军, 孙勇. 等腰梯形蜂窝芯玻璃钢夹芯板的面外压缩性能[J]. 材料工程, 2017, 45(2):72-79. ZHENG J L, PENG M J, SUN Y. Out-plane compressive properties for isosceles trapezoid honeycomb core of FRP sandwich panel[J]. Journal of Materials Engineering, 2017, 45(2):72-79.
    [9] KATSUHIKO I, MASAYUKI K, SUSUMU F. Bending and springback theory of metal-polymer sandwich laminates[J]. Journal of Macromolecular Science Part B, 1981, 19(4):773-791.
    [10] CORONA E, EISENHOUR T. Wiping die bending of laminated steel[J]. International Journal of Mechanical Sciences, 2007, 49(3):392-403.
    [11] AGHCHAI A J, ABOLGHASEMI A, MORADKHANI B, et al. Experimental, theoretical and numerical investigation of springback behavior of Al/composite/Al sandwich sheet[J/OL]. Journal of Sandwich Structures & Materials, 2016,19(6):doi:10.1177/1099636216636099.
    [12] LIU L, WANG J. Modeling springback of metal-polymer-metal laminates[J]. Journal of Manufacturing Science & Engineering, 2004, 126(3):599-604.
    [13] YUEN W Y D. A generalised solution for the prediction of springback in laminated strip[J]. Journal of Materials Processing Technology, 1996, 61(3): 254-264.
    [14] HUANG Y M, LEU D K. Finite-element simulation of the bending process of steel/polymer/steel laminate sheets[J]. Journal of Materials Processing Technology, 1995, 52(2/4): 319-337.
    [15] LI H, CHEN J, YANG J. Experimental and numerical investigation of laminated steel sheet in V-bending process considering nonlinear visco-elasticity of polymer layer[J]. Journal of Materials Processing Technology, 2012, 212(1): 36-45.
    [16] CHENG Q H, LEE H P, LU C. A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores[J]. Composite Structures, 2006, 74(2):226-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700