用户名: 密码: 验证码:
藏北羌塘盆地中部地壳低速层分布与动力学意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications
  • 作者:严江勇 ; 郑洪伟 ; 贺日政 ; 李娱兰 ; 李瑶 ; 牛潇
  • 英文作者:Yan Jiangyong;Zheng Hongwei;He Rizheng;Li Yulan;Li Yao;Niu Xiao;China Deep Exploration Center of the Chinese Academy of Geological Sciences,Key Laboratory of Earth Probe and Geodynamics;Institute of Geology,Chinese Academy of Geological Sciences;Key Laboratory of Seismic Observation and Geophysical Imaging,Institute of Geophysics,China Earthquake Administration;Institute of Geophysics,China Earthquake Administration;
  • 关键词:羌塘盆地 ; 接收函数分析 ; 时频域相位滤波 ; 非线性反演一维S波速度结构 ; 壳内低速层 ; 地球物理
  • 英文关键词:Qiangtang basin;;receive function analysis;;time-frequency domain phase filter;;nonlinear inversion of one-dimensional S wave velocity structure;;crustal low-velocity layer;;geophysics
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国地质科学院深部探测中心国土资源部深部探测与地球动力学重点实验室;中国地质科学院地质研究所;中国地震局地球物理研究所地震观测与地球物理成像重点研究室;中国地震局地球物理研究所;
  • 出版日期:2018-11-15 09:22
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:国家重点研发计划(No.2016YFC0600301);; 科技部深地资源勘查开采(Nos.2016YCF0600301,2018YCF0604102);; 国家自然基金(Nos.41574086,41761134094);; 中国地质调查项目(No.DD20160022-05)
  • 语种:中文;
  • 页:DQKX201906003
  • 页数:13
  • CN:06
  • ISSN:42-1874/P
  • 分类号:18-30
摘要
为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-I宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.
        In order to investigate the distribution characteristics of the low velocity layer in the central Qiangtang basin,this study conducted the TITAN-I teleseismic receiver functions across the Qiangtang basin. And the signal-to-noise ratio of the receiver function was improved by the phase filtering technique in the time frequency domain. Finally,the one-dimensional S wave velocity structure in the depth of 100 km below each station is obtained by the nonlinear inversion of conjugate gradients algorithm for the complex spectrum ratios of receiver function. The results show that the phase filtering method in the time frequency domain can significantly improve the signal-to-noise ratio and make the one-dimensional S wave velocity structure of the subsequent inversion more reliable. The Moho depth of the Qiangtang basin is 58 ±6 km,and where has a higher Poisson's ratio. The low velocity layer in the mid-lower crust is widely distributed. The transverse discontinuity is discontinuous,and the depth is between 20 and 30 km,the thickness of the layer is 6-12 km,the shear wave velocity is 3.4± 0.1 km/s. In some areas,there is a thin layer of 4 km thin layer in the mid-upper crust with a depth of 10 km. The low velocity layer in the mid-lower crust of the Qiangtang basin is caused by the deep mantle derived magma upwelling along the tectonic weak zone,resulting in partial melting in the mid-lower crust and upper mantle.
引文
Ammon,C.J.,Randall,G.E.,Zandt,G.,1990.On the Nonuniqueness of Receiver Function Inversions.Journal of Geophysical Research,95(B10):15303-15318.
    Ammon,C.J.,Zandt,G.,1993.Receiver Structure beneath the Southern Mojave Block,California.Bulletin of the Seismological Society of America,83(3):737-755.
    Chi,X.G.,Zhang,R.,Fan,L.F.,et al.,2017.The Formatting Mechanism of Cenozoic Basaltic Volcanic Rocks in the Northern Tibet:Continental Subduction and Slab Breakoff Driven by Mantle Convection and Upwelling.Acta Petrologica Sinica,33(10):3011-3026(in Chinese with English abstract).
    Cui,Z.Z.,Yin,Z.X.,Gao,E.Y.,et al.,1990.The Structure and Tectonics of the Crust and Their Relation with Earthquakes in the Qinghai-Xizang Plateau.Acta Geoscientica Sinica,11(2):215-232(in Chinese with English abstract).
    Gao,R.,Chen,C.,Lu,Z.W.,et al.,2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling.Tectonophysics,606:160-170.https://doi.org/10.1016/j.tecto.2013.08.006
    Gao,X.,Wang,W.M.,Yao,Z.X.,et al.,2005.Crustal Structure of China Mainland and Its Adjacent Regions.Chinese Journal of Geophysics,48(3):591-601(in Chinese with English abstract).
    Guo,X.F.,Zhang,Y.C.,Cheng,Q.Y.,et al.,1990.Magnetotelluric Studies along Yadong-Golmud Geosciences Transect in Qinghai-Xizang Plateau.Acta Geoscientia Sinica,22(2):191-202(in Chinese with English abstract).
    Haines,S.S.,Klemperer,S.L.,Brown,L.,et al.,2003.IN-DEPTH III Seismic Data:From Surface Observations to Deep Crustal Processes in Tibet.Tectonics,22(1):1001.https://doi.org/10.1029/2001tc001305
    He,R.Z.,Gao,R.,Hou,H.S.,et al.,2009.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane,Tibet Plateau from Broadband Seismic Observations and Its Implications.Progress in Geophysics,24(3):900-908(in Chinese with English abstract).
    Huang,J.J.,2001.Structural Characteristics of the Basement of the Qiangtang Basin.Acta Geologica Sinica,75(3):333-337(in Chinese with English abstract).
    Jiménez-Munt,I.,Fernàndez,M.,Vergés,J.,et al.,2008.Lithosphere Structure underneath the Tibetan Plateau Inferred from Elevation,Gravity and Geoid Anomalies.Earth and Planetary Science Letters,267(1-2):276-289.https://doi.org/10.1016/j.epsl.2007.11.045
    Kind,R.,Ni,J.,Zhao,W.,et al.,1996.Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet.Science,274(5293):1692-1694.https://doi.org/10.1126/science.274.5293.1692
    Li,C.,Dong,Y.S.,Zhai,Q.G.,et al.,2008.Discovery of Eopaleozoic Ophiolite in the Qiangtang of Tibet Plateau:Evidence from SHRIMP U-Pb Dating and Its Tectonic Implications.Acta Petrologica Sinica,24(1):31-36(in Chinese with English abstract).
    Li,Y.H.,Tian,X.B.,Wu,Q.J.,et al.,2006.The Poisson Ratio and Crustal Structure of the Central Qinghai-Xizang Inferred from INDEPTH-ⅢTeleseismic Waveforms:Geological and Geophysical Implications.Chinese Journal of Geophysics,49(4):1037-1044(in Chinese with English abstract).
    Liu,Q,Y.,1996.Maximal Likelihood Estimation and Nonlinear Inversion of the Complex Receiver Runction Spectrum Ratio.Chinese Journal of Geophysics,39(4):500-511(in Chinese with English abstract).
    Liu.,G.C.,Shang,X.F.,He,R.Z.,et al.,2014.Topography of Moho beneath the Central Qiangtang in North Tibet and Its Geodynamic Implication.Chinese Journal of Geophysics,57(7):2043-2053(in Chinese with English abstract).
    Mechie,J.,Sobolev,S.V.,Ratschbacher,L.,et al.,2004.Precise Temperature Estimation in the Tibetan Crust from Seismic Detection of theα-βQuartz Transition.Geology,32(7):601-604.https://doi.org/10.1130/g20367.1
    Nelson,K.D.,Zhao,W.,Brown,L.D.,et al.,1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science,274(5293):1684-1688.https://doi.org/10.1126/science.274.5293.1684
    Qu,Z.D.,He,R.Z.,Zhang,X.H.,et al.,2017.The Time-Frequency Domain Phase Filter and Its Application in Noise Suppression of Teleseismic Receiver Functions.Chinese Journal of Geophysics,60(4):1389-1397(in Chinese with English abstract).
    Replumaz,A.,Negredo,A.M.,Guillot,S.,et al.,2010.Multiple Episodes of Continental Subduction during India/Asia Convergence:Insight from Seismic Tomography and Tectonic Reconstruction.Tectonophysics,483(1-2):125-134.https://doi.org/10.1016/j.tecto.2009.10.007
    Shi,D.N.,Zhao,W.J.,Brown,L.,et al.,2004.Detection of Southward Intracontinental Subduction of Tibetan Lithosphere along the Bangong-Nujiang Suture by P-to-SConverted Waves.Geology,32(3):209.https://doi.org/10.1130/g19814.1
    Stockwell,R.G.,1999.S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers.The University of Western Ontario,Canada,4662.
    Sun,M.,Chen,W.,Qu,X.M.,et al.,2018.Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area,Tibet.Earth Science,43(9):3234-3251(in Chinese with English abstract).
    Tarantola,A.P.,1987.Inverse Problem Theory:Methods for Data Fitting and Model Parameter Estimation.Physics of the Earth&Planetary Interiors,57(3):350-351.
    Teng,J.W.,Ruan,X.M.,Zhang,Y.Q.,et al.,2012.The Stratifficational Velocity Structure of Crust and Covering Strata of Upper Mantle and the Orbit of Deep Interaquifer Substance Locus of Movement for Tibetan Plateau.Acta Petrologica Sinica,28(12):4077-4100(in Chinese with English abstract)
    Wang,C.S.,Hu,C.Z.,Wu,R.Z.,et al.,1987.Significance of the Discovery of Chasang-Chabu Rift in Northern Xizang(Tibet).Journal of Chengdu College of Geology,14(2):33-46(in Chinese with English abstract).
    Wang,W.,Gao,X.,Li,Y.Y.,et al.,2011.Crustal Velocity Structure of S-Wave beneath Tibetan Plateau with Transform Function Method-Hi-Climb Profile.Chinese Journal of Geophysics,54(6):766-776.https://doi.org/10.1002/cjg2.1660
    Watanabe,T.,1993.Effects of Water and Melt on Seismic Velocities and Their Application to Characterization of Seismic Reflectors.Geophysical Research Letters,20(24):2933-2936.https://doi.org/10.1029/93gl03170
    Wu,G.J.,Xiao,X.C.,Li,T.D.,1989.The Yadong-Golmud Geoscience Section on the Qinghai-Tibet Plateau.Acta Geologica Sinica,63(4):285-296(in Chinese with English abstract).
    Wu,Q.J.,Zeng,R.S.,1998.The Crustal Structure of QinghaiXizang Plateau Inferred from Broadband Teleseismic Waveform.Chinese Journal of Geophysics,41(5):669-679(in Chinese with English abstract).
    Wu,W.,Liu,Q.Y.,He,R.Z.,et al.,2017.Waveform Inversion of S-Wave Velocity Model in the Central Qiangtang in North Tibet and Its Geological Implications.Chinese Journal of Geophysics,60(3):941-952(in Chinese with English abstract).
    Zhang,S.Y.,Zhang,X.J.,1996.Magnetotelluric Sounding in the Qiangtang Basin of Xizang(Tibet).Earth Science,21(2):98-102(in Chinese with English abstract).
    Zhao,Z.,Lu,L.,Wu,Z.H.,et al.,2018.Charactreistics of the Late Triassic Jiangai Granite Mass and the Slab Breakoff in Central Qiangtang,Tibet.Earth Science,43(Suppl.1):225-242(in Chinese with English abstract).
    Zou,C.Q.,He,R.Z.,Gao,R.,et al.,2012.Deep Structure of the Central Uplift Belt in the Qiangtang Terrane Tibetan Plateau from Teleseismic P-Wave Tomography.Chinese Science Bulletin,57(28-29):2729-2739(in Chinese).
    迟效国,张蕊,范乐夫,等,2017.藏北新生代玄武质火山岩起源的深部机制:大陆俯冲和板片断离驱动的地幔对流上涌模式.岩石学报,33(10):3011-3026.
    崔作舟,尹周勋,高恩元,等,1990.青藏高原地壳结构构造及其与地震的关系.地球学报,11(2):221-232.
    高星,王卫民,姚振兴,等,2005.中国及邻近地区地壳结构.地球物理学报,48(3):591-601.
    郭新峰,张元丑,程庆云,等,1990.青藏高原亚东-格尔木地学断面岩石圈电性研究.地球学报,22(2):191-202.
    贺日政,高锐,侯贺晟,等,2009.羌塘中央隆起带深部结构特征研究及其意义.地球物理学进展,24(3):900-908.
    黄继钧,2001.羌塘盆地基底构造特征.地质学报,75(3):333-337.
    李才,董永胜,翟庆国,等,2008.青藏高原羌塘早古生代蛇绿岩:堆晶辉长岩的锆石SHRIMP定年及其意义.岩石学报,24(1):31-36.
    李永华,田小波,吴庆举,等,2006.青藏高原INDEPTH-Ⅲ剖面地壳厚度与泊松比:地质与地球物理含义.地球物理学报,49(4):1037-1044.
    刘国成,尚学峰,贺日政,等,2014.藏北羌塘盆地中部莫霍面形态及其动力学成因.地球物理学报,57(7):2043-2053.
    刘启元,1996.接收函数复谱比的最大或然性估计及非线性反演.地球物理学报,39(4):500-511.
    曲中党,贺日政,张训华,等,2017.时频域相位滤波在远震接收函数噪声压制中的应用.地球物理学报,60(4):1389-1397.
    孙渺,陈伟,曲晓明,等,2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学,43(9):3234-3251.
    滕吉文,阮小敏,张永谦,等,2012.青藏高原地壳与上地幔成层速度结构与深部层间物质的运移轨迹.岩石学报,28(12):4077-4100.
    王成善,胡承祖,吴瑞忠,等,1987.西藏北部查桑-茶布裂谷的发现及其地质意义.成都地质学院学报,14(2):33-46.
    吴功建,肖序常,李廷栋,1989.青藏高原亚东-格尔木地学断面.地质学报,63(4):285-296.
    吴庆举,曾融生,1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报,41(5):669-679.
    吴蔚,刘启元,贺日政,等,2017.羌塘盆地中部地区地壳S波速度结构及构造意义.地球物理学报,60(3):941-952.
    张胜业,张先觉,1996.西藏羌塘盆地大地电磁测深研究.地球科学,21(2):98-102.
    赵珍,陆露,吴珍汉,等,2018.羌塘中部晚三叠世江爱岩体特征与板片断离作用.地球科学,43(增刊1):225-242.
    邹长桥,贺日政,高锐,等,2012.远震P波层析成像研究羌塘中央隆起带深部结构.科学通报,57(28-29):2729-2739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700