用户名: 密码: 验证码:
银纳米线柔性电极的制备及电化学方法测定水中微量铜离子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Silver Nanowires Flexible Electrode for Electrochemical Detection of Trace Copper in Water
  • 作者:杨海波 ; 周文慧 ; 甄雪 ; 马龙飞 ; 申贵隽 ; 孙晶
  • 英文作者:YANG Hai-Bo;ZHOU Wen-Hui;ZHEN Xue;MA Long-Fei;SHEN Gui-Jun;SUN Jing;College of Environmental and Chemical Engineering,Dalian University;
  • 关键词:聚二甲基硅氧烷 ; 银纳米线 ; 柔性电极 ; 方波溶出伏安法 ; 铜离子
  • 英文关键词:Polydimethylsiloxane;;Silver nanowire;;Flexible electrode;;Square wave stripping voltammetry;;Copper ion;;Detection
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:大连大学环境与化学工程学院;
  • 出版日期:2018-03-15
  • 出版单位:分析化学
  • 年:2018
  • 期:v.46
  • 基金:国家自然科学基金项目(No.21505013);; 辽宁省百千万人才项目(No.[2015]6);; 浙江大学工业控制技术国家重点实验室开放课题(No.ICT1549)资助~~
  • 语种:中文;
  • 页:FXHX201803024
  • 页数:8
  • CN:03
  • ISSN:22-1125/O6
  • 分类号:159-166
摘要
以聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为柔性基底材料、银纳米线为导电层,制备了一种银纳米线柔性电极。此柔性电极具有良好的拉伸性和弯折性,可方便地改变电极的形状和大小。以其为工作电极,建立了方波溶出伏安法检测水中Cu~(2+)的方法。自制银纳米线柔性电极的微观表面均匀,平均电阻为1.03Ω,电化学性质优于商品金电极及商品银电极。考察了Bi3+浓度、支持电解质溶液及p H值、富集电位和富集时间对Cu~(2+)方波溶出伏安曲线峰电流的影响。结果表明,在Bi3+浓度为0.5 mg/L、0.1 mol/L酒石酸-酒石酸钠缓冲溶液(p H 4.8)为支持电解质、富集电位为0.6 V、富集时间为600 s的条件下,在-0.3~0.3 V范围内,Cu~(2+)的方波溶出伏安曲线峰形最尖锐,峰电流最高,检测最灵敏。在优化条件下,Cu~(2+)的线性检测范围为0.10~0.001 mg/L,检出限为9.27×10~(-5)mg/L。本方法检测Cu~(2+)速度快、灵敏度高、检测范围宽,可满足水样中Cu~(2+)的检测要求,同时为利用本方法检测水中的其它金属离子提供了参考和依据。自制银纳米线柔性电极具有良好的柔韧性以及生物相容性,在一些特殊场合的检测或即时检测中具有较大的应用潜力。
        A silver nanowires( Ag NWs) flexible electrode was prepared using polydimethylsiloxane( PDMS)as the substrate and Ag NWs as the conductive layer. It is easier to change the shapes and sizes of the flexible electrode due to its excellent stretchability and foldability. A square wave stripping voltammetry( SWSV)method for the detection of trace copper in water was established using the electrode as the working electrode.The characterization of Ag NWs flexible electrode showed that the spread of Ag NWs was uniform and the average resistance was 1.03 Ω. The data of electrochemical analysis showed that the properties of the electrode were superior to commercialized gold electrode and silver electrode. The effects of Bi~(3+)concentration,supporting electrolyte,p H value,enrichment potential and enrichment time were determined and optimized.We achieved the sharpest and highest peak of the SWSV curves for the detection of Cu~(2+)in the range of-0.3-0.3 V,which means the most sensitive detection,under the following conditions such as 0.5 mg/L Bi3+,0.1 mol/L support electrolyte tartaric acid-sodium tartrate solution( p H,4.8),0.6 V of enrichment potential,and 600 s of enrichment time. Under such conditions,the linear detection range of Cu~(2+)concentration was from0.001 mg/L to 0. 100 mg/L and the detection limit was 9. 27 × 10~(-5) mg/L. The advantages of this detection method are fast speed,high sensitivity and wide detection range. Therefore,it can not only meet the requirements for the copper ion detection but also provide a new method or experimental basis for the detection of other metal ions in water. In addition,the Ag NWs flexible electrode has great potential in detections under special circumstances or instantaneous detections due to its wonderful flexibility and biocompatibility.
引文
1 GBZ/T 5749-2006.Standards for Drinking Water Quality.National Standards of the People's Republic of China生活饮用水卫生标准.中华人民共和国国家标准.GBZ/T 5749-2006
    2 Valko M,Jomova K,Rhodes C J,Kucˇa K,Musílek K.Arch.Toxicol.,2016,90(1):1-37
    3 Zhang M,Ye B C.Analyst,2011,136(24):5139-5142
    4 Qing Z,Mao Z,Qing T,He X,Zou Z,He D.Anal.Chem.,2014,86(22):11263-11268
    5 SU Yao-Dong,ZHU Wen-Ying,QIN Li,CHEN Long-Wu.Spectroscopy and Spectral Analysis,2006,26(5):959-962苏耀东,朱文颖,覃俐,陈龙武.光谱学与光谱分析,2006,26(5):959-962
    6 Amberger M A,Barth P,F9rster O,Broekaert J A C.Microchim.Acta,2011,172(3-4):261-267
    7 Djedjibegovic J,Larssen T,Skrbo A,Marjanovic'A,Sober M.Food Chem.,2012,131(2):469-476
    8 Kopylovich M N,Mahmudov K T,Pombeiro A J L.J.Hazard.Mater.,2011,186(2-3):1154-1162
    9 Yi W J,Li Y,Ran G,Luo H Q,Li N B.Sens.Actuators B,2012,166-167(6):544-548
    10 Pujol L,Evrard D,Groenen-Serrano K,Freyssinier M,Ruffien-Cizsak A,Gros P.Front.Chem.,2014,2:19
    11 Lee D,Lee H,Ahn Y,Jeong Y,Lee D Y,Lee Y.Nanoscale,2013,5(17):7750-7755
    12 Liu W Y,Zhao M M,Guo X D,Tang J.J.Measurement Sci.Instrument.,2016,7(4):307-316
    13 He W W,Ye C H.J.Measurement Sci.Instrument.,2015,31(6):581-588
    14 Xu F,Zhu Y.Adv.Mater.,2012,24(37):5117-5122
    15 Lee J Y,Shin D,Park J.Thin Solid Films,2016,608:34-43
    16 Madaria A R B M,Kumar A,Zhou C.Nanotechnology,2011,22(24):245201
    17 Yusoff A,Mohd R,Lee S J,Shneider F K,da Silva W J,Jang J.Adv.Energy Mater,2014,4(12):1301989
    18 Kim B S,Shin K Y,Pyo J B,Lee J H,Son J G,Lee S S,Park J H.ACS Appl.Mater.Interfaces,2016,8(4):2582-2590
    19 Liu S,Liu W,Yu J,Zhang W,Zhang L,Wen X,Yin Y,Xie W.J.Mater.Chem.C,2014,2(5):835-840
    20 WANG Wei-Xin,LIU Wei-Ping,WU Bin,LIANG Guang-Tie,LIU Da-Yu.Chinese J.Anal.Chem.,2015,43(5):637-642王伟鑫,刘未平,吴斌,梁广铁,刘大渔.分析化学,2015,43(5):637-642
    21 Akter T,Kim W S.ACS Appl.Mater.Interfaces,2012,4(4):1855-1859
    22 He T,Liang Q,Zhang K,Mu X,Luo T,Wang Y,Luo G.Microfluid.Nanofluid.,2011,10(6):1289-1298
    23 HUANG Hui,ZHANG Wen-Kui,MA Chun-An,GE Zhong-Hua,LU Huan-Ming,ZHANG Xiao-Bin.Chem.J.Chinese University,2002,23(11):2151-2154黄辉,张文魁,马淳安,葛忠华,卢焕明,张孝彬.高等学校化学学报,2002,23(11):2151-2154
    24 Sabri Y M,Ippolito S J,Tardio J,Bansal V,O'Mullane A P,Bhargava S K.Sci.Rep.,2014,4(4):6741
    25 Hwang G H,Han W K,Park J S,Kang S G.Talanta,2008,76(2):301-308
    26 ZHANG Xing,XIAO Jian-Lin,LIU Jian-Yun.J.Anal.Sci.,2013,29(3):333-337张星,肖健林,刘建允.分析科学学报,2013,29(3):333-337
    27 Yordkhuan T,Sopida T,Adisri C,Jitnapa S,Kevin B,Nantanit W.Dalton Trans.,2017,46:16251-16256
    28 Zohreh P,Pouya H,Milad J L Arash V.Ultrason.Sonochem.,2018,41:337-349
    29 Wen X D,Yang Q L,Yan Z D,Deng Q W.Microchem.J.,2011,97(2):249-254
    30 Mahsa M,Jahan B R,Sayed R H,Reza O.J.Iranian Chem.Soc.,2017,14(6):1263-1270
    31 Shirley T P,Donald J S U,Michelle T N,Toni B G L.Mater.Res.Express,2017,4(11):116406
    32 HJ 485-2009,Water Quality-Determination of Copper-Sodium Diethydlthiocabamate Spectrophotometric Method.National Standards of the People's Republic of China水质铜的测定二乙基二硫代氨基甲酸钠分光光度法.中华人民共和国国家标准.HJ 485-2009
    33 HJ 486-2009,Water Quality-Determination of Copper-2,9-Dimethy-1,10-Phenanthroline Spectrophotometric Method.National Standards of the People's Republic of China水质铜的测定2,9-二甲基-1,10-菲吧啉分光光度法.中华人民共和国国家标准.HJ 486-2009
    34 GB 3838-2002,Environmental Quality Standards for Surface Water.National Standards of the People's Republic of China地表水环境质量标准.中华人民共和国国家标准.GB 3838-2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700