用户名: 密码: 验证码:
半主动控制弹簧-电磁铁隔离器的隔冲性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shock isolation ability of a spring-electromagnetic absorber based on semi-active control
  • 作者:曾泽璀 ; 张磊 ; 张春辉 ; 闫明
  • 英文作者:ZENG Zecui;ZHANG Lei;ZHANG Chunhui;YAN Ming;School of Mechanical Engineering, Shenyang University of Technology;Naval Research Academy;
  • 关键词:半主动控制 ; 电磁力 ; 参数展开法 ; 非线性振动方程
  • 英文关键词:semi-active controlling;;electromagnetic force;;parameter expanding method;;nonlinear differential equation
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:沈阳工业大学机械工程学院;海军研究院;
  • 出版日期:2019-07-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.346
  • 基金:预研基金(102030205)
  • 语种:中文;
  • 页:ZDCJ201914002
  • 页数:7
  • CN:14
  • ISSN:31-1316/TU
  • 分类号:16-22
摘要
针对恒力缓冲装置有效隔冲距离短、受系统阻尼影响大的缺点,提出一种新型半主动控制弹簧-电磁铁(SSEM)隔离器。其主要控制原理:通过不同控制方法来调节磁力大小和方向来适应特定冲击环境。根据SSEM隔离器控制原理,建立SSEM隔离器非线性运动微分方程;使用参数展开法求解方程获得近似解析解,并且解析结果与四阶龙格库塔方法的数值求解结果基本一致;并与恒力缓冲装置的隔冲性能进行对比。研究结果表明,SSEM隔离器的冲击隔离性能优于被动恒力缓冲装置,前者不仅最优缓冲系数优于后者,而且其能够在冲击作用下能够快速恢复到初始平衡位置。
        A novel semi-active control spring and electromagnet(SSEM) isolator was proposed to address the defect of too short distance of effective isolation of constant-force isolators. The principle of SSEM isolator is that the magnitude and direction of the electromagnetic force are veried by using different strategies to adapt the specific shock environment. The nonlinear differential equation of motion of the SSEM isolator was built according to the principle. Then the parameter expanding method was used to solve the equation to obtain the approximate analysis solution. The analysis results have an excellent agreement with numerical results using fourth-order Runge-Kutta method. The resulted performance was compared with the performance of constant-force isolators. The results demonstrate that the SSEM isolator outperform constant-force isolators, not only for the optimal isolator coefficient is better, but also for the SSEM isolator can fast recover to the equilibrium position.
引文
[1]张春辉,汪玉,杜俭业,等.被动式恒力缓冲装置的设计与性能研究[J].振动与冲击,2015,34(13):176-181.ZHANG Chunhui,WANG Yu,DU Jianye,et al.Design of a passive constant force shock absorber and its characteristics[J].Journal of Vibration and Shock,2015,34(13):176-181.
    [2]ZHOU J,XIAO Q,XU D,et al.A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform[J].Journal of Sound and Vibration,2017,394:59-74.
    [3]ZHOU J,WANG X,XU D,et al.Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms[J].Journal of Sound and Vibration,2015,346:53-69.
    [4]HUANG H,HUI D.Accurate backbone curves for largeamplitude vibrations of imperfect rectangular plate with viscous damping[J].KSCE Journal of Civil Engineering,2015,19(5):1-7.
    [5]王毅,徐道临,周加喜.滚球型准零刚度隔振器的特性分析[J].振动与冲击,2015,34(4):142-147.WANG Yi,XU Daolin,ZHOU Jiaxi.Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness[J].Journal of Vibration and Shock,2015,34(4):142-147.
    [6]王勇,李舜酩,程春.基于准零刚度隔振器的车-座椅-人耦合模型动态特性研究[J].振动与冲击,2016,35(15):190-196.WANG Yong,LI Shunming,CHENG Chun.Dynamic characteristics of a vehicle-seat-human coupled model with quasi-zero stiffness isolators[J].Journal of Vibration and Shock,2016,35(15):190-196.
    [7]ANVAR V,ALEXEY Z,ARTEM T.Study of application of vibration isolators with quasi-zero stiffness for reducing dynamics loads on the foundation[J].Procedia Engineering,2017,176:137-143.
    [8]WU W,CHEN X,SHAN Y.Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J].Journal of Sound and Vibration,2014,333:2958-2970.
    [9]LIU C,JING X,DALEY S,et al.Recent advances in microvibration isolation[J].Mechanical Systems and Signal Processing,2015,56:55-80.
    [10]KARNOPP D,CROSBY M J,HARWOOD R A.Vibration control using semi-active force generators[J].Journal of Engineering for Industry,1974,96(2):619-626.
    [11]DOS SANTOS M B,COELHO H T,NETO F P L,et al.Assessment of semi-active friction dampers[J].Mechanical Systems and Signal Processing,2017,94:33-56.
    [12]ZHOU W Y,LI D X.Design and analysis of an intelligent vibration isolation platform for reaction/momentum wheel assemblies[J].Journal of Sound and Vibration,2012,331:2984-3005.
    [13]PAN R,JIANG J,BUCHAL R O.Design of an optimal shock-damping isolator with application to casters[J].Journal of Sound and Vibration,2006,289:278-293.
    [14]HO C,LANG Z Q,BILLINGS S A.Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities[J].Journal of Sound and Vibration,2014,333:2489-2504.
    [15]CHATTERJEE S.Optimal active absorber with internal state feedback for controlling resonant and transient vibration[J].Journal of Sound and Vibration,2010,329:5397-5414.
    [16]HILL T L,CAMMARANO A,NEILD S A,et al.Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves[J].Journal of Sound and Vibration,2015,349:276-288.
    [17]KHAMITOV R N,AVER’YANOV G S,KORCHAGIN A B.Pneumatic shock absorber with an active damping system[J].Russian Engineering Research,2009,29(9):871-873.
    [18]BAO B,TANG W.Semi-active vibration control featuring a self-sensing SSDV approach[J].Measurement,2017,104:192-203.
    [19]WEBER F.Semi-active vibration absorber based on real-time controlled MR damper[J].Mechanical Systems and Signal Processing,2014,46(2):272-288.
    [20]师汉民.机械振动系统下册[M].武汉:华中科技大学出版社,2004.
    [21]SEDIGHI H M,SHIRAZI K H,REZA A,et al.Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2012,226(10):2474-2484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700