用户名: 密码: 验证码:
水合物开采过程中影响套管式加热器对井周地层加热效果的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of heating process of casing heater in natural gas hydrate production wells
  • 作者:康家浩 ; 郭威 ; 陆程 ; 李冰 ; 贾瑞 ; 陆红锋 ; 张鹏宇 ; 杨翔
  • 英文作者:KANG Jiahao;GUO Wei;LU Cheng;LI Bing;JIA Rui;LU Hongfeng;ZHANG Pengyu;YANG Xiang;College of Construction Engineering, Jilin University;Key Lab of Drilling and Exploitation Technology in Complex Conditions of Ministry of Natural Resources;Oil and Gas Resources Investigation Center,China Geological Survey;Guangzhou Marine Geological Survey,China Geological Survey;
  • 关键词:套管式加热器 ; 加热功率 ; 二次水合物 ; 日产水量 ; 气水比 ; 数值模拟
  • 英文关键词:casing heater;;heating power;;secondary hydrate;;daily water production;;gas-water ratio;;numerical simulation
  • 中文刊名:TKGC
  • 英文刊名:Exploration Engineering(Rock & Soil Drilling and Tunneling)
  • 机构:吉林大学建设工程学院;自然资源部复杂条件钻采技术重点实验室;中国地质调查局油气资源调查中心;中国地质调查局广州海洋地质调查局;
  • 出版日期:2019-06-10
  • 出版单位:探矿工程(岩土钻掘工程)
  • 年:2019
  • 期:v.46;No.397
  • 基金:中国地质调查局项目(编号:DD20190232)
  • 语种:中文;
  • 页:TKGC201906002
  • 页数:7
  • CN:06
  • ISSN:11-5063/TD
  • 分类号:8-14
摘要
套管式加热器在维持孔壁稳定的同时还可实现对井周地层加热,以防止水合物开采过程中井周形成二次水合物。为分析水合物开采过程中日产水量、气水比和加热功率对井周地层温度分布的影响,采用COMSOL Multiphysics对加热过程进行模拟。模拟结果表明,日产水量对加热效果的影响明显大于加热功率,加热功率主要影响近井段的地层温度,气水比主要影响加热半径。通过数值模拟对套管加热器的加热效果进行了分析和评价,对天然气水合物的经济高效开采具有指导意义。
        The casing heater, besides maintaining the stability of the well wall, can also heat wellbore formation to prevent the generation of secondary hydrates in the well during the gas hydrate production process. In order to analyze the influence of daily water production, gas-water ratio and heating power on the temperature distribution in the surrounding formation during the gas hydrate production process, the heating process was simulated by COMSOL Multiphysics. The simulation results show that the effect of water production rate on the heating effect is obviously greater than the heating power; while the heating power mainly affects the temperature of the near-well formation, and the gas-water ratio mainly affects the heating radius. The numerical simulation is used to analyze and evaluate the heating effect of the casing heater, which provides guide for the economical and efficient production of natural gas hydrate.
引文
[1] Alexei V.Milkov.Global estimates of hydrate-bound gas in marine sediments:how much is really out there[J].Earth Science Reviews,2003,66(3):183-197.
    [2] Englezos P.Clathrate hydrates[J].Ind Eng Chem Res,1993,32(7):1251-1274.
    [3] Sloan E D.Clathrate hydrates of natural gases[M].New York:Marcel Dekker,1998:18-28.
    [4] Koh C A.Towards a fundamental understanding of natural gas hydrates[J].Chemical Society Reviews,2002,31:157-167.
    [5] Yuri F.Makogon.Natural gas hydrates-A promising source of energy[J].Journal of Natural Gas Science and Engineering,2010,2(1):49-59.
    [6] Miller,J.J,Lee,M.W.,Huene,R.Ananalysis of a seismic reflection from the base of a gas hydrate zone,offshore Peru[J].A .A .P .G .Bulletin,1991,75(5) :910-924.
    [7] 王宏语,纪云龙.认识一种新兴资源——天然气水合物[J].资源·产业,2005,(1):63-67.WANG Hongyu,JI Yunlong.Know a kind of burgeoning resource-gas hydrates[J].Resources & Industries,2005,(1):63-67.
    [8] Englezos Peter,Lee Judong.A cleaner source of energy[J].Springer-Verlag,2005,22(5):671-681.
    [9] 宣之强,李钟模,吴必豪,等.天然气水合物新能源简介——对全球试采、开发和研究天然气水合物现状的综述[J].化工矿产地质,2018,40(1):48-52.XUAN Zhiqiang,LI Zhongmo,WU Bihao,et al.Introduction to new energy gas hydrate-a review on globle pilot production,development and reserch status of gas hydrate[J].Geology of Chemical Minerals,2018,40(1):48-52.
    [10] Makogon Y.F.,Holditch S.A.,Makogon T.Y..Natural gas-hydrates—A potential energy source[J].Journal of Petroleum Science and Engineering,2007,56(1):14-31.
    [11] 于德福,陈惠玲.南海深处的冰与火[N].中国国土资源报,2017-05-22.YU Defu,CHEN Huiling.Ice and fire in the deep South China Sea[N].The Chinese Newspaper of Land and Resources,2017-05-22.
    [12] 陈玉凤,梁德青,吴能友.南海神狐海域水合物对岩心电阻率的影响[J].石油地球物理勘探,2018,53(6):1241-1246,1113-1114.CHEN Yufeng,LIANG Deqing,WU Nengyou.Resistivity characteristics of core samples containing natural gas hydrates in Shenhu Area,the South China Sea[J].Oil Geophysical Prospecting,2018,53(6):1241-1246,1113-1114.
    [13] 万义钊,吴能友,胡高伟,等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业,2018,38(4):117-128.WAN Yizhao,WU Nengyou,HU Gaowei,et al.Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J].Natural Gas Industry,2018,38(4):117-128.
    [14] 吴时国,王吉亮.南海神狐海域天然气水合物试采成功后的思考[J].科学通报,2018,63(1):2-8.WU Shiguo,WANG Jiliang.On the China’s successful gas production test from marine gas hydrate reservoirs[J].Chinese Science Bulletin,2018,63(1):2-8.
    [15] 丁蟠峰,杨富祥,程遥遥.可燃冰的研究现状与前景[J].当代化工,2019,48(4):815-818.DING Panfeng,YANG Fuxiang,CHENG Yaoyao.Research status and prospect of gas hydrates[J].Contemporary Chemical Industry,2019,48(4):815-818.
    [16] 肖莹莹,左力艳,张诚.天然气水合物研究与开发试验概述[J].内蒙古石油化工,2018,44(10):18-22.XIAO Yingying,ZUO Liyan,ZHANG Cheng.An overview of international gas hydrate research and trial production[J].Inner Mongolia Petrochemical Industry,2018,44(10):18-22.
    [17] Konno Yoshihiro,Masuda Yoshihiro,Hariguchi Yosuke.Key factors for depressurization-Induced gas production from oceanic methane hydrates[J].Energy & Fuels,2010,24(3):1736-1744.
    [18] Zheng Su,George J.Moridis,Keni Zhang.A huff-and-puff production of gas hydrate deposits in Shenhu Area of South China Sea[J].Journal of Petroleum Science and Engineering,2012,86-87:54-61.
    [19] Seol Yongkoo,Myshakin Evgeniy.Experimental and numerical observations of hydrate reformation[J].Energy & Fuels,2011,25(3):1099-1110.
    [20] George-J.Moridis,Matthew T.Reagan.Estimating the upper limit of gas production from class 2 hydrate accumulations in the permafrost:2.Alternative well designs and sensitivity analysis[J].Journal of Petroleum Science and Engineering,2010,76(3):124-137.
    [21] 孙友宏,李冰,贾瑞,等.一种利用套管式加热器开采天然气水合物的方法,中国:CN108505977A[P].2018-09-07.SUN Youhong,LI Bing,JIA Rui,et al.A method of exploiting natural gas hydrate by casing heater,China:CN108505977A[P].2018-09-07.
    [22] 李刚,李小森,陈琦,等.南海神狐海域天然气水合物开采数值模拟[J].化学学报,2010,68(11):1083-1092.LI Gang,LI Xiaosen,CHEN Qi,et al.Numerical simulation of gas production from gas hydrate zone in Shenhu Area,South China Sea[J].Acta Chimica Sinica,2010,68(11):1083-1092.
    [23] 李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质,2017,37(5):34.LI Yanlong.Successful completion and historic breakthrough of natural gas hydrate trial production in China’s offshore areas[J].Marine Geology & Quaternary Geology,2017,37(5):34.
    [24] 曹运诚.南海神狐海域天然气水合物顶界计算-沉积物粒度影响[C]//中国地球物理学会、中国地震学会、全国岩石学与地球动力学研讨会组委会、中国地质学会构造地质学与地球动力学专业委员会、中国地质学会区域地质与成矿专业委员会.2017中国地球科学联合学术年会论文集(二十八)——专题56:海洋地球物理,2017.CAO Yuncheng.Natural gas hydrate in Shenhu Area of top-calculation of sediment grain size effect [C]//China Geophysical Society,China Seismological Society,Organizing Committee of National Symposium on Petrology and Geodynamics,Specialized Committee of Structural Geology and Geodynamics of China Geological Society,Regional Geology and Mineralization Committee of China Geological Society.Papers Collection of 2007 China Geosciences Joint Academic Annual Meeting (28)-Theme 56:Marine Geophysics,2017.
    [25] 刘华南.冻土层钻探低温泡沫冲洗液的研究[D].吉林长春:吉林大学,2016.LIU Huanan.Research on low temperature foam flushing fluid used in frozen soil layer drilling[D].Changchun Jilin:Jilin University,2016.
    [26] 李刚,李小森,Keni Zhang,等.水平井开采南海神狐海域天然气水合物数值模拟[J].地球物理学报,2011,54(9):2325-2337.LI Gang,LI Xiaosen,Keni Zhang,et al.Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu Area,South China Sea[J].Chinese Journal of Geophysics,2011,54(9):2325-2337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700