用户名: 密码: 验证码:
大豆可溶性多糖与Fe~(2+)对O/W乳状液物理稳定性及流变特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Soybean Soluble Polysaccharides and Fe~(2+) on Physical Stability and Rheological Properties of O/W Emulsion
  • 作者:王胜男 ; 杨晋杰 ; 邵国强 ; 赵玲玲 ; 杨立娜 ; 何余堂 ; 刘贺
  • 英文作者:WANG Sheng-nan;YANG Jin-jie;SHAO Guo-qiang;ZHAO Ling-ling;YANG Li-na;HE Yu-tang;LIU He;College of Food Science and Engineering,Bohai University;
  • 关键词:大豆可溶性多糖 ; 亚铁离子 ; 流变特性 ; 物理稳定性
  • 英文关键词:soybean soluble polysaccharides;;ferrous ion;;rheological properties;;physical stability
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:渤海大学食品科学与工程学院;
  • 出版日期:2018-08-02 14:25
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.418
  • 基金:国家自然科学基金面上项目(31471621)
  • 语种:中文;
  • 页:SPKJ201902014
  • 页数:6
  • CN:02
  • ISSN:11-1759/TS
  • 分类号:81-86
摘要
研究大豆可溶性多糖(soybean soluble polysaccharides,SSPS)及不同浓度的Fe~(2+)对大豆分离蛋白(soy isolated protein,SPI)稳定的O/W乳状液的物理稳定性和流变特性的影响。通过测定14 d内添加SSPS和不同浓度的Fe~(2+)的乳状液的稳定动力学指数(turbiscan stability index,TSI)、稳态流变、粒径大小及分布和Zeta-电位,确定其物理稳定性。结果表明,与SPI乳状液相比,添加SSPS后,SSPS-SPI乳状液的TSI显著降低(p <0.05),液滴的表面积平均直径(d_(3,2))和体积平均直径(d_(4,3))增加,粘度系数增加,Zeta-电位绝对值降低,表明SSPS增加了SPI乳状液的粘度,提高了乳状液的物理稳定性;添加0.1 mmol/L Fe~(2+)后,乳状液的TSI最低,液滴的d_(3,2)和d_(4,3)分别为0.686、2.136μm,为最小粒径,粘度增加,稳定性较好;随着Fe~(2+)浓度的增加,乳状液的TSI显著增加(p <0.05),粒径增大,分布范围变宽,表明0.2~0.5 mmol/L的Fe~(2+)降低了乳状液的物理稳定性。总之,SSPS和0.1 mmol/L Fe~(2+)的添加,提高了SPI稳定的O/W乳状液的物理稳定性。
        The effects of soybean soluble polysaccharides( SSPS) and different concentrations of Fe~(2+) on the physical stability and rheological properties of soy isolated protein( SPI) stabilized oil-in-water emulsions were investigated. The turbiscan stability index( TSI),steady rheology,particle size and distribution and Zeta-potential of the emulsions containing SSPS and different concentrations of Fe~(2+) within 14 days were determined.The results showed that the TSI of the SSPS-SPI emulsion was significantly lower than that of the SPI emulsion,and the surface area average diameter( d_(3,2)) and volume average diameter( d_(4,3)) of the droplets increased,the viscosity coefficient increased and the absolute value of Zeta-potential decreased,indicating that SSPS increased the viscosity of the SPI emulsion and improved the physical stability of the emulsion. After addition of 0.1 mmol/L Fe~(2+),the TSI was the lowest,and the particle size was the smallest with the d_(3,2)and d_(4,3)of 0.686,2.136 μm,respectively,the viscosity of emulsion increased,its physical stability was better. With increasing of Fe~(2+)concentration,the TSI increased significantly( p < 0.05),the particle size became larger and the distribution range became wider,indicating that 0.2~0.5 mmol/L Fe~(2+)decreased the physical stability of the emulsions. In a word,the addition of SSPS and 0.1 mmol/L Fe~(2+)improved the physical stability of the SPI-stabilized O/W emulsion.
引文
[1]Claire C,Berton-Carabin,Marie-Hélène R,et al.Lipid oxidation in oil-in-water emulsions:Involvement of the interfacial layer[J].Comprehensive Reviews in Food Science and Food Safety,2014,13:945-977.
    [2]李媛媛,刘骞,汪海棠,等.阿拉伯树胶-肌原纤维蛋白共建乳状液体系的物理稳定性[J].食品科学,2017,38(11):182-189.
    [3]Decker E A,Mcclements D J,Bourlieu-Lacanal C,et al.Hurdles in predicting antioxidant efficacy in oil-in-water emulsions[J].Trends in Food Science&Technology,2017,67:183-194.
    [4]Mozuraityte R,Kristinova V,Rustad T,et al.The role of iron in peroxidation of PUFA:Effect of p H and chelators[J].European Journal of Lipid Science and Technology,2016,118(4):658-668.
    [5]万芝力.大豆蛋白-甜菊糖苷相互作用及对界面主导食品体系的调控研究[D].广州:华南理工大学,2016.
    [6]Zhao J,Wei T,Wei Z,et al.Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion[J].Food Hydrocolloids,2015,44:443-452.
    [7]张芬芬,曾茂茂,何志勇,等.大豆分离蛋白乳状液稳定性的几种分析方法比较[J].食品科学,2012,33(17):44-47.
    [8]Chivero P,Gohtani S,Ikeda S,et al.The structure of soy soluble polysaccharide in aqueous solution[J].Food Hydrocolloids,2014,35(1):279-286.
    [9]Bechtold T,Manian A P,Ozturk H B,et al.Ion-interactions as driving force in polysaccharide assembly[J].Carbohydrate Polymers,2013,93(1):316-323.
    [10]Chen B,Mcclements D J,Decker E A.Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions[J].Journal of Agricultural and Food Chemistry,2010,58(6):3779-3784.
    [11]Salvia-Trujillo L,Decker E A,Mcclements D J.Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions:Antioxidant effects of alginate[J].Food Hydrocolloids,2016,52:690-698.
    [12]Qiu C Y,Zhao M M,Mcclements D J.Improving the stability of wheat protein-stabilized emulsions:Effect of pectin and xanthan gum addition[J].Food Hydrocolloids,2015,43:377-387.
    [13]Qiu C Y,Zhao M M,Decker E A,et al.Influence of anionic dietary fibers(xanthan gum and pectin)on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion[J].Food Research International,2015,74:131-139.
    [14]Xu X F,Liu W,Luo L P,et al.Influence of anionic polysaccharides on the physical and oxidative stability of hydrolyzed rice glutelin emulsions:Impact of polysaccharide type and p H[J].Food Hydrocolloids,2017,72:185-194.
    [15]Tran T,Rousseau D.Stabilization of acidic soy protein-based dispersions and emulsions by soy soluble polysaccharides[J].Food Hydrocolloids,2013,30(1):382-392.
    [16]Raikos V.Encapsulation of vitamin E in edible orange oil-in-water emulsion beverages:Influence of heating temperature on physicochemical stability during chilled storage[J].Food Hydrocolloids,2017,72:155-162.
    [17]刘贺,庚平,王俊,等.商业橘皮果胶与大豆果胶流变性质的比较[J].食品科学,2014,35(21):26-30.
    [18]Liang Y,Gillies G,Patel H,et al.Physical stability,microstructure and rheology of sodium-caseinate-stabilized emulsions as influenced by protein concentration and nonadsorbing polysaccharides[J].Food Hydrocolloids,2014,36(2):245-255.
    [19]白洁,彭义交,李玉美,等.基于Turbiscan稳定性分析仪技术研究微细化处理在燕麦豆乳中的应用[J].食品工业科技,2015,36(13):108-112.
    [20]Cheng Q,Decker E A,Xiao H,et al.Physical and chemical stability ofβ-carotene-enriched nanoemulsions:Influence of p H,ionic strength,temperature,and emulsifier type[J].Food Chemistry,2012,132(3):1221-1229.
    [21]Gu Y S,Decker E A,Mcclements D J.Influence of pH and ι-carrageenan concentration on physicochemical properties and stability of β-lactoglobulin-stabilized oil-in-water emulsions[J].Journal of Agricultural and Food Chemistry,2004,52(11):3626-3632.
    [22]Tadros T F.Fundamental principles of emulsion rheology and their applications[J].Colloids and Surface A:Physicochemical and Engineering Aspects,1994,91(93):39-55.
    [23]赵丽.大豆种皮多糖的乳化特性及机制研究[D].锦州:渤海大学,2013.
    [24]邓全花.抗盐聚合物与表面活性剂复合体系的体相和界面性能及协同增效原理[D].济南:山东大学,2016.
    [25]郭晓飞.大豆皮果胶类多糖胶凝行为及精细结构的初步解析[D].锦州:渤海大学,2012.
    [26]Jiao B,Shi A M,Liu H A,et al.Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization[J].Food Hydrocolloids,2017,77:329-335.
    [27]Qiu C Y,Zhao M M,Decker E A,et al.Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions:Gliadin,casemate,and whey protein[J].Food Chemistry,2015,175(15):249-257.
    [28]Nakamura A,Yoshida R,Maeda H,et al.Study of the role of the carbohydrate and protein moieties of soy soluble polysaccharides in their emulsifying properties[J].Journal of Agricultural and Food Chemistry,2004,52(17):5506-5512.
    [29]Chen B,Li H,Ding Y,et al.Improvement of physicochemical stabilities of emulsions containing oil droplets coated by nonglobular proteinebeet pectin complex membranes[J].Food Research International,2011,44(5):1468-1475.
    [30]Makoto N,Takahiro F,Sakie N,et al.Comparison of sugar beet pectin,soybean soluble polysaccharide,and gum arabic as food emulsifiers.1.Effect of concentration,p H,and salts on the emulsifying properties[J].Food Hydrocolloids,2008,22(7):1254-1267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700