用户名: 密码: 验证码:
茶树成花机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances on Tea Flowering Mechanisms
  • 作者:刘莹 ; 郝心愿 ; 郑梦霞 ; 王新超 ; 肖斌 ; 杨亚
  • 英文作者:LIU Ying;HAO Xinyuan;ZHENG Mengxia;WANG Xinchao;XIAO Bin;YANG Yajun;College of Horticulture, Northwest A&F University;Tea Research Institute of Chinese Academy,Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministy of Agriculture and Rural Affairs of the People's Republic of China;
  • 关键词:茶树 ; 开花诱导 ; 花芽分化 ; 花发育
  • 英文关键词:tea plant;;flowering induction;;floral bud differentiation;;floral development
  • 中文刊名:CYKK
  • 英文刊名:Journal of Tea Science
  • 机构:西北农林科技大学园艺学院;中国农业科学院茶叶研究所/国家茶树改良中心/农业部茶树生物学与资源利用重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:茶叶科学
  • 年:2019
  • 期:v.39
  • 基金:中国农业科学院茶叶研究所基本科研业务费专项(1610212016007)
  • 语种:中文;
  • 页:CYKK201901001
  • 页数:10
  • CN:01
  • ISSN:33-1115/S
  • 分类号:4-13
摘要
开花是植物进入生殖生长的重要标志,花器官的形成在遗传信息传递中起重要作用。茶树是起源于我国西南地区的重要经济作物,具有开花多、花期长的特点。生产上,茶树旺盛的生殖生长会消耗大量营养,影响茶叶的产量和品质。而在杂交育种中,茶树又具有自交不亲和与结实率低等特点。对茶树成花机理的研究有助于深入了解茶树花芽分化和发育的时间、影响因素及分子调控机制,为茶树良种选育、绿色高效生产和育种效率提高等提供理论基础。目前对茶树成花机理的研究已取得一定进展,但还不够深入和系统。本文结合其他植物成花调控最新研究进展,从开花诱导、花芽分化与发育机制方面对茶树开花相关研究取得的进展进行了综述,以期对目前存在的问题和未来研究方向提供有益思考。
        Flowering is an important sign of changing to reproductive growth for plants. Therefore, the formation of flower organs is important for the transmission of genetic information. Tea plant is a valuable cash crop species originated from the southwestern China, whose active blossoms last a long period. In production, the consumption of large amount of nutrients by exuberant reproductive growth seriously affects the yield and quality of tea. On the contrary, in cross breeding, tea plant has the features of self-incompatibility and low seed fertility. In order to gain insight into the timetable of floral bud differentiation and development, influencing factors and molecular regulation mechanisms, it is necessary to disclose the flowering mechanism of tea plant to provide a theoretical basis for fine breeding, high-efficiency production and improving breeding efficiency. Currently, researches on tea plant flowering had made some progresses, but not deep and systematic enough. This paper introduced recent advances in flowering regulation in tea plant and other plant species, flower bud differentiation and floral development. Useful thoughts for current problems and future research directions in tea plant flowering were also provided.
引文
[1]Boss PK,Bastow RM,Mylne JS,et al.Multiple pathways in the decision to flower:enabling,promoting,and resetting[J].Plant Cell,2004,16(Suppl):S18-S31.
    [2]Wang JW,Czech B,Weigel D.MiR156-regulated SPLtranscription factors define an endogenous flowering pathway in Arabidopsis thaliana[J].Cell,2009,138(4):738-749.
    [3]Valverde F,Mouradov A,Soppe W,et al.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J].Science,2004,303(5660):1003.
    [4]Garner WW,Allard HA.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in PLANTS1[J].Mon Weather Rev,2009,48(2):157-158.
    [5]Corbesier L,Vincent C,Jang S,et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316(5827):1030-1033.
    [6]Simpson GG,Dean C.The Rosetta stone of flowering time[J].Genome Biol,2002,1(5):181-200.
    [7]Hemming MN,Peacock WJ,Dennis ES,et al.Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley[J].Plant Physiol,2008,147(1):355-366.
    [8]Kim JJ,Lee JH,Kim W,et al.The microRNA156-SQUAMOSAPROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERINGLOCUS T in Arabidopsis[J].Plant Physiol,2012,159(1):461-478.
    [9]Kumimoto R,Adam L,Hymus G,et al.The nuclear factor Ysubunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis[J].Planta,2008,228(5):709-723.
    [10]Kumimoto RW,Zhang Y,Siefers N,et al.NF-YC3,NF-YC4and NF-YC9 are required for CONSTANS-mediated,photoperiod‐dependent flowering in Arabidopsis thaliana[J].Plant J,2010,63(3):379-391.
    [11]Siriwardana CL,Gnesutta N,Kumimoto RW,et al.Nuclear factor Y,Subunit A(NF-YA)proteins positively regulate flowering and act through FLOWERING LOCUS T[J].Plos Genet,2016,12(12):e1006496.DOI:10.1371/journal.pgen.1006496.
    [12]Suárezlópez P,Wheatley K,Robson F,et al.CONSTANSmediates between the circadian clock and the control of flowering in Arabidopsis[J].Nature,2001,410(6832):1116-1120.
    [13]Nelson DC,Lasswell J,Rogg LE,et al.FKF1,a clock-controlled gene that regulates the transition to flowering in Arabidopsis[J].Cell,2000,101(3):331-340.
    [14]Mizoguchi T,Wright L,Fujiwara S,et al.Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis[J].Plant Cell,2005,17(8):2255-2270.
    [15]Fornara F,Panigrahi KC,Gissot L,et al.Arabidopsis DOFtranscription factors act redundantly to reduce CONSTANSexpression and are essential for a photoperiodic flowering response[J].Dev Cell,2009,17(1):75-86.
    [16]Jung J,Seo Y,Seo PJ,et al.The GIGANTEA-regulated microrna172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J].The Plant Cell,2007,19(9):2736-2748.
    [17]郝心愿.茶树越冬芽休眠的分子机理研究[D].杨凌:西北农林科技大学,2015.
    [18]Wei C,Yang H,Wang S,et al.Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome and tea quality[J].Proc Nat Acad Sci,2018,115(18):E4151-E4158.
    [19]李娅莉.不同光周期对山茶花成花影响的研究[D].雅安:四川农业大学,2005.
    [20]Finnegan EJ,Genger RK,Kovac K,et al.DNA methylation and the promotion of flowering by vernalization[J].Proc Natl Acad Sci USA,1998,95(10):5824-5829.
    [21]Koornneef M,Alonsoblanco C,Peeters AJ,et al.Genetic control of flowering time in Arabidopsis[J].Annu rev plant Physiol plant Mo biol,1998,49(1):345-370.
    [22]Gendall AR,Levy YY,Wilson A,et al.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J].Cell,2001,107(4):525-535.
    [23]Bastow R,Mylne JS,Lister,C,et al.Vernalization requires epigenetic silencing of FLC by histone methylation[J].Nature,2004,427(6970):164-167.
    [24]Sung S,Amasino RM.Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J].Nature,2004,427(6970):159-164.
    [25]Sung S,Amasino RM.Vernalization and epigenetics:how plants remember winter[J].Curr Opin Plant Biol,2004,7(1):4-10.
    [26]Tabuenca MC.Winter chilling requirements of European plum varieties(Prunus domestica L)[J].An La Estacion Exp Aula Dei,1983.
    [27]Ghrab M,Mimoun MB,Masmoudi MM,et al.Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees[J].Sci Hortic,2014,178,87-94.
    [28]Marquardt S,Boss PK,Hadfield J,et al.Additional targets of the Arabidopsis autonomous pathway members,FCA and FY[J].J Exp Bot,2006,57(13):3379-3386.
    [29]Michaels SD,Amasino RM.Loss of FLOWERING LOCUS Cactivity eliminates the late-flowering phenotype of FRIGIDAand autonomous pathway mutations but not responsiveness to vernalization[J].Plant Cell,2001,13(4):935-941.
    [30]B?urle I,Smith L,Baulcombe DC,et al.Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing[J].Science,2007,318(5847):109-112.
    [31]Sonmez C,B?urle I,Magusin A,et al.RNA 3'processing functions of Arabidopsis FCA and FPA limit intergenic transcription[J].Proc Natl Acad Sci USA,2011,108(20):8508-8513.
    [32]Liu F,Quesada V,Crevillen P,et al.The Arabidopsis RNA-Binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC[J].Mol Cell,2007,28(3):398-407.
    [33]He Y,Michaels SD,Amasino RM.Regulation of flowering time by histone acetylation in Arabidopsis[J].Science,2003,302(5651):1751-1754.
    [34]Aus?-N I,Alonso-Blanco C,Jarillo JA,et al(2004).Regulation of flowering time by FVE,a retinoblastoma-associated protein[J].Nat Genet,2004,36(2):162-166.
    [35]Lee I,Aukerman MJ,Gore SL,et al.Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in arabidopsis[J].Plant Cell,1994,6(1):75-83.
    [36]Aukerman MJ,Lee I,Weigel D,et al.The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression[J].Plant J,1999,18(2):195-203.
    [37]Lim MH,Kim J,Kim YS,et al.A new Arabidopsis gene,FLK,encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERINGLOCUS C[J].Plant Cell,2004,16(3):731-740.
    [38]Mockler TC,Yu X,Shalitin D,et al.Regulation of flowering time in Arabidopsis by K homology domain proteins[J].Proc Natl Acad Sci USA,2004,101(34):12759-12764.
    [39]李合生.现代植物生理学[M].3版.北京:高等教育出版社,2006:231.
    [40]Monselise SP.Recent advances in the understanding of flower formation in fruit trees and its hormonal control[J].Acta Hortic,1973,34:157-166.
    [41]黄亚辉,粟本文,曾贞,等.外源激素调控茶树成花的研究[J].茶叶通讯,2002(4):3-6.
    [42]岳川,曾建明,曹红利,等.茶树赤霉素受体基因CsGID1a的克隆与表达分析[J].作物学报,2013,39(4):599-608.
    [43]Thomas SG,Hu J,Dill A,et al.DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J].Plant Physiol,2004,135(2):1008-1019.
    [44]Pysh LD,Wysockadiller JW,Camilleri C,et al.The GRASgene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J].Plant J Cell Mol Biol,2010,18(1):111-119.
    [45]虞莎,王佳伟.miR156介导的高等植物年龄途径研究进展[J].科学通报,2014,59(15):1398-1404.
    [46]Wang JW.Regulation of flowering time by the miR156-mediated age pathway[J].J Exp Bot,2014,65(17):4723-4730.
    [47]Chen XB,Zhang ZL,Liu DM,et al.SQUAMOSApromoter-binding protein-like transcription factors:star players for plant growth and development[J].J Integr Plant Biol,2010,52(11):946-951.
    [48]Preston JC,Hileman LC.Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE(SPL)gene family[J].Front Plant Sci,2013,4(80):80.DOI:10.3389/fpls.2013.00080.
    [49]Wu G,Poethig RS.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J].Development,2006,133(18):3539-3547.
    [50]Wei Q,Ma C,Xu Y,et al.Control of chrysanthemum flowering through integration with an aging pathway[J].Nat Commun,2017,8(1):829.DOI:10.1038/s41467-017-00812-0.
    [51]刘亚芹,田坤红,孙琪璐,等.茶树miR156a靶基因SPL6和SPL9的克隆及表达分析[J].茶叶科学,2017,37(6):551-564.
    [52]Borner R,Kampmann G,Chandler J,et al.A MADS domain gene involved in the transition to flowering in Arabidopsis[J].Plant J Cell Mol Biol,2000,24(5):591-599.
    [53]Moon J,Suh SS,Lee H,et al.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J].Plant J,2003,35(5):613-623.
    [54]Jung JH,Ju Y,Seo PJ,et al.The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J].Plant J Cell Mol Biol,2012,69(4):577-588.
    [55]Tao Z,Shen L,Liu C,et al.Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis[J].Plant J,2012,70(4):549-561.
    [56]Hepworth SR,Valverde F,Ravenscroft D,et al.Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J].Embo J,2014,21(16):4327-4337.
    [57]Lee SG,Felker P.Influence of water/heat stress on flowering and fruiting of mesquite(Prosopis glandulosa var.glandulosa)[J].J Arid Environ,1992,23(3):309-319.
    [58]Corrales AR,Nebauer SG,Carrillo L,et al.Characterization of tomato cycling dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J].J Exp Bot,2014,65(4):995-1012.
    [59]Kai F,Dongmei F,Zhaotang D,et al.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant(Camellia sinensis L)[J].Plant Physiol Biochem Ppb,2015,97,350-360.
    [60]王常红,汪东风.稀土对茶树生殖生长的影响[J].茶叶科学,2000,20(1):55-58.
    [61]杨亚军.中国茶树栽培学[M].上海:上海科学技术出版社,2005:74.
    [62]Jia S,Wang Y,Hu J,et al.Mineral and metabolic profiles in tea leaves and flowers during flower development[J].Plant Physiol Biochem,2016,106:316-326.
    [63]Liu F,Wang Y,Ding Z,et al.Transcriptomic analysis of flower development in tea[Camellia sinensis(L.)][J].Gene,2017,631:39-51.
    [64]江昌俊.茶树花芽分化和胚胎发育的解剖学研究[D].合肥:安徽农业大学,1987.
    [65]严学成.茶树形态结构与品质鉴定[M].北京:农业出版社,1990:67.
    [66]王丽娜,刘青林.花序分生组织特性基因TFL1的系统发育及其功能分析[J].中国生物工程杂志,2008,28(1):106-112.
    [67]Hao XY,Yang YJ,Yue,C,et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-,endo-,ecodormancy,and bud flush stages[J].Front Plant Sci,2017,8(481):553.
    [68]Liu C,Teo ZWN,Bi Y,et al.A conserved genetic pathway determines inflorescence architecture in Arabidopsis thaliana and rice[J].Dev Cell,2013,24(6):612-622.
    [69]施雁飞.茶树CsAP1基因克隆及AP1基因系统进化分析[D].西安:陕西师范大学,2014.
    [70]Coen ES,Meyerowitz EM.The war of the whorls:genetic interactions controlling flower development[J].Nature,1991,353(6339):31-37.
    [71]Colombo L,Franken J,Koetje E,et al.The petunia MADSbox gene FBP11 determines ovule identity[J].Plant Cell,1995,7(11):1859-1868.
    [72]Rounsley SD,Ditta GS,Yanofsky MF.Diverse roles for MADS box genes in Arabidopsis development[J].Plant Cell,1995,7(8):1259-1269.
    [73]Pelaz S,Ditta GS,Baumann E,et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J].Nature,2000,405(6783):200-203.
    [74]丛楠,程治军,万建民.控制花器官发育的ABCDE模型[J].中国农学通报,2007,23(7):124-128.
    [75]方成刚,夏丽飞,陈林波,等.茶树CsAP2基因的全长cDNA克隆与序列分析[J].茶叶科学,2014,6:577-582.
    [76]吴致君,卢莉,黎星辉,等.茶树AP2/ERF-B3类转录因子基因的克隆与表达特性分析[J].南京农业大学学报,2014,37(4):67-75.
    [77]Hao,XY.Identification and expression analysis of dormancy associated MADS-box and flowering locus T genes in tea plant(Camellia sinensis(L.)O.Kuntze)[C]//International Plant and Animal Genome Conference XXII,2014.
    [78]周坤.茶树MADS-box家族B类基因CsGLO1和CsGLO2的克隆及其与C类基因CsAG的功能研究[D].西安:陕西师范大学,2015.
    [79]靳春梅,周坤,张今今.茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J].植物科学学报,2017,35(1):79-86.
    [80]程国山.茶树CSAG基因克隆及AG基因系统进化分析[D].西安:陕西师范大学,2014.
    [81]唐红.茶树MADS-box家族B类基因CsTM6的克隆及其与CsDEF的功能研究[D].西安:陕西师范大学,2016.
    [82]秋梦颖.茶树CsDEF基因克隆及AP3/DEF基因系统进化分析[D].西安:陕西师范大学,2015.
    [83]Zhang CC,Tan LQ,Wang LY,et al.Cloning and characterization of an S-RNase gene in Camellia sinensis[J].Sci Hortic,2016,207:218-224.
    [84]Fang WP.Differentially expression of Tua1,a tubulin-encoding gene,during glowering of tea plant Camellia sinensis(L.)O.Kuntze using cDNA amplified fragment length polymorphism technique[J].Acta Bioch Bioph Sin,2006,38(9):653-662.
    [85]陈暄,汤茶琴,邹中伟,等.茶树花发育相关的一个钙依赖蛋白激酶基因的克隆与表达分析[J].茶叶科学,2009,29(1):47-52.
    [86]陈聪,江昌俊,叶爱华,等.茶树PCP基因内含子的克隆与序列分析[J].安徽农学通报,2009,15(11):69,190.DOI:10.16377/j.cnki.issn1007-7731.2009.11.038.
    [87]余梅,江昌俊,叶爱华,等.茶树花粉特异蛋白基因CsPSP1的分离及序列分析[J].激光生物学报,2008,17(2):206-212.
    [88]龚莹,余梅,江昌俊,等.茶树花粉特异蛋白基因CsPSP的反义载体构建[J].安徽农业大学学报,2012,39(3):397-400.
    [89]余梅,江昌俊,房婉萍,等.茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析[J].中国农业科学,2008,41(10):2983-2991.
    [90]叶爱华,余梅,朱林,等.用cDNA-AFLP及其改进的方法分析茶树花发育过程中的基因表达[J].激光生物学报,2008,17(6):733-738.
    [91]韩兴杰,徐玲玲,廖亮,等.茶树LEAFY基因的克隆和表达分析[J].园艺学报,2015,42(8):1606-1616.
    [92]丁菲,庞磊,李叶云,等.茶树海藻糖-6-磷酸合成酶基因(CsTPS)的克隆及表达分析[J].农业生物技术学报,2012,20(11):1253-1261.
    [93]郝心愿,曹红利,杨亚军,等.茶树生长素响应因子基因CsARF1的克隆与表达分析[J].作物学报,2013,(3):389-397.
    [94]李梅,陈林波,田易萍,等.雌蕊缺失茶树花3个发育期的数字基因表达谱分析[J].茶叶科学,2017,37(1):97-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700