用户名: 密码: 验证码:
太原汾河蓄水区浮游植物细胞密度及其与营养元素的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between the growth of phytoplankton and the distribution of nutrients in the Fenhe water storage area of Taiyuan
  • 作者:刘洋 ; 吕俊平 ; 刘琪 ; 谢树莲 ; 冯佳
  • 英文作者:LIU Yang;L Junping;LIU Qi;XIE Shulian;FENG Jia;School of Life Science,Shanxi University;
  • 关键词:太原汾河蓄水区 ; 浮游植物 ; 营养元素 ; 相关性分析 ; 主成分分析
  • 英文关键词:Fenhe water storage area;;phytoplankton;;nutrients;;correlation analysis;;principal components analysis
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:山西大学生命科学学院;
  • 出版日期:2017-10-18 11:43
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:山西省社会发展科技攻关项目(201603D321001,201603D321008)
  • 语种:中文;
  • 页:STXB201803025
  • 页数:12
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:254-265
摘要
水体营养元素是影响水体生态系统的重要因素,决定着水体中不同的浮游生物群落结构,也是评价水质和水体营养状态的重要指标。对太原汾河蓄水区9个样点浮游植物和各项水环境及营养元素进行了调查与分析,调查期间发现(1)该流域蓝藻和绿藻为主要优势类群,即构成了以蓝-绿藻门为主要的浮游群落。平水期与丰水期优势种均以蓝藻门的微小色球藻(Chroococcus minutus)、微小平裂藻(Merismopedia tenuissima)、小颤藻(Oscillatoria tenuis)、铜绿微囊藻(Microcystis aeruginosa)为主,其丰度分别占平水期和丰水期藻细胞总数的42.95%和59.24%。叶绿素a含量随地理位置变化明显,中下游显著高于上游。(2)太原汾河蓄水区水质均达到富营养状态。由于太原汾河蓄水区沿途的生活垃圾、污水的不合理排放,导致汾河中总氮、总磷等指标偏高,最终导致整个水体处于轻度富营养状态或中度富营养状态。(3)叶绿素a含量与水温、总氮、总磷呈显著正相关,与有机物含量呈极显著正相关,总磷的影响最为明显,说明磷可能是该地区浮游植物生长的限制因子。
        Physicochemical factors and nutrients are important factors affecting aquatic ecosystems. Differences in physicochemical and nutrimental factors determine variation in phytoplankton community structure. Therefore,evaluation of water quality and nutrient status is necessary. Since 2015,we have studied the phytoplankton,and the physicochemical and nutrimental factors of the Fenhe water storage area. The results showed that(1) Cyanophyta and Chorophyta constituted the majority of the plankton community in the regions studied. Throughout the year,Cyanophyta was the most abundant phylum of planktonic algae. The dominant species,including Chroococcus minutus,Merismopedia tenuissima,Oscillatoria tenuis,and Microcystis aeruginosa,all of accounted for 42.95% and 59.24% of the algal community during the wet season and the dry season,respectively. Simultaneously,the concentration of chlorophyll-a revealed strong temporal and spatial variation in the Fenhe water storage area of Taiyuan,(annual mean: 38. 13 mg/L; range: 17. 04—84. 60 mg/L). The chlorophyll-a concentration during the wet season was significantly higher than that in the dry season. During the wet season and the dry season,the spatial distribution patterns of chlorophyll-a were similar,increasing from upstream to downstream.(2) The water quality indicated eutrophication in the studied area. With rapid socio-economic development,increase in population and industrial enterprises,and urban-scale expansion,multiple test sites near the city center revealed that high levels ofhousehold-generated garbage,sewage,and industrial waste discharge into the Fenhe water storage area,owing to the lack of strict control measures. Total phosphorus and the other indicators were on the higher side,indicating that the water body is in mild or moderate eutrophic state(Chaicun Bridge,Shengli Bridge,Yingze Bridge,and Changfeng Bridge areas). In addition,at one point,some sites reached a severe eutrophic state(Nanneihuan Bridge,Jifen Bridge,Nanzhonghuan Bridge,and Jiuyuanshahe Bridge),which resulted the destruction of the ecological environment.(3) Chlorophyll is essential for photosynthesis. Measuring chlorophyll-a concentration could reflect the phytoplankton biomass and water quality status. The species composition of the phytoplankton community was closely correlated with chlorophyll-a content,dynamic variation of the physical and chemical index,and comprehensive index of water body. The correlation and principal components analyses revealed significant positive correlation of chlorophyll-a concentration with temperature,total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(COD),and permanganate index(CODMn). Further,phosphorous might be a limiting factor,as indicated by its strong effect on phytoplankton abundance.
引文
[1]徐祖信.河流污染治理规划理论与实践.北京:中国环境科学出版社,2003.
    [2]Pérez J R,Loureiro S,Menezes S,Palma P,Fernandes R M,Barbosa I R,Soares A M V M.Assessment of water quality in the Alqueva Reservoir(Portugal)using bioassays.Environmental Science and Pollution Research,2010,17(3):688-702.
    [3]鞠永富,于洪贤,于婷,柴方营,姚允龙,张延成,费滕,夏凌云.西泉眼水库夏季浮游动物群落结构特征及水质评价.生态学报,2016,36(16):5126-5132.
    [4]Beisner B E,Longhi M L.Spatial overlap in lake phytoplankton:relations with environmental factors and consequences for diversity.Limnology and Oceanography,2013,58(4):1419-1430.
    [5]Longhi M L,Beisner B E.Environmental factors controlling the vertical distribution of phytoplankton in lakes.Journal of Plankton Research,2009,31(10):1195-1207.
    [6]Yang Y S,Wang L.A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution.Water Resources Management,2010,24(9):1819-1843.
    [7]况琪军,马沛明,胡征宇,周广杰.湖泊富营养化的藻类生物学评价与治理研究进展.安全与环境学报,2005,5(2):87-91.
    [8]张永生,郑丙辉,姜霞,郑浩,钟娜,陈春宵.三峡库区大宁河藻细胞昼夜垂直迁移研究.环境科学,2012,33(11):3787-3796.
    [9]张永生,郑丙辉,王坤,姜霞,郑浩.三峡库区大宁河枯水期藻细胞的时空分布.环境科学,2013,34(6):2166-2175.
    [10]王爱爱,冯佳,谢树莲.汾河中下游浮游藻类群落特征及水质分析.环境科学,2014,35(3):915-923.
    [11]柴毅,彭婷,郭坤,何勇凤,杨德国,罗静波.2012年夏季长湖浮游植物群落特征及其与环境因子的关系.植物生态学报,2014,38(8):857-867.
    [12]章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991.
    [13]Haande S,Rohrlack T,Semyalo R P,Brettum P,Edvardsen B,Lyche-Solheim A,Srensen K,Larsson P.Phytoplankton dynamics and cyanobacterial dominance in Murchison Bay of Lake Victoria(Uganda)in relation to environmental conditions.Limnologica-Ecology and Management of Inland Waters,2011,41(1):20-29.
    [14]中国科学院中国孢子植物志编辑委员会.中国淡水藻志(第一至第十五卷).北京:科学出版社,1988-2012.
    [15]时红,孙新忠,范建华.水质分析方法与技术.北京:地震出版社,2001.
    [16]李艳利,李艳粉,徐宗学.影响浑太河流域大型底栖动物群落结构的环境因子分析.环境科学,2015,36(1):94-106.
    [17]周群英,高廷耀.环境工程微生物学(第二版).北京:高等教育出版社,2000.
    [18]金相灿.中国湖泊环境.北京:海洋出版社,1995.
    [19]陈建良,胡明明,周怀东,王雨春,王英才,李艳晖,刘永定,高继军,洪宇宁.洱海蓝藻水华暴发期浮游植物群落变化及影响因素.水生生物学报,2015,39(1):24-28.
    [20]胡俊,杨玉霞,池仕运,沈强,胡菊香.邙山提灌站浮游植物群落结构空间变化对环境因子的响应.生态学报,2017,37(3):1054-1062.
    [21]洪松,陈静生.中国河流水生生物群落结构特征探讨.水生生物学报,2002,26(3):295-305.
    [22]徐春燕,杨洁,马明睿,胡雪芹,由文辉.淀山湖水华高发期浮游植物群落变化特征研究.环境科学,2012,33(4):1136-1143.
    [23]田时弥,杨扬,乔永民,何文祥,林剑华,王栋宇.珠江流域东江干流浮游植物叶绿素a时空分布及与环境因子的关系.湖泊科学,2015,27(1):31-37.
    [24]胡韧,林秋奇,段舜山,韩博平.热带亚热带水库浮游植物叶绿素a与磷分布的特征.生态科学,2002,21(4):310-315.
    [25]Koerselman W,Meuleman A F.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation.Journal of Applied Ecology,1996,33(6):1441-1450.
    [26]黄国佳,李秋华,陈椽,商立海,张垒,欧滕,高廷进,李钥,邓龙.贵州高原红枫湖水库浮游植物功能分组及其时空分布特征.生态学报,2015,35(17):5573-5584.
    [27]张文彤.SPSS统计分析高级教程.北京:高等教育出版社,2004.
    [28]王捷,冯佳,谢树莲,张建民,程革,连耀俊.汾河太原河段浮游植物多样性及微囊藻产异味物质成因.生态学报,2015,35(10):3357-3363.
    [29]易齐涛,陈求稳,赵德慧,徐鑫.淮南采煤塌陷湖泊浮游植物功能群的季节演替及其驱动因子.生态学报,2016,36(15):4843-4854.
    [30]Temponeras M,Kristiansen J,Moustaka-Gouni M.Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Do6rani,Macedonia,Greece.Hydrobiologia,2000,424(1/3):109-122.
    [31]邱小琮,赵红雪,孙晓雪.宁夏沙湖浮游植物与水环境因子关系的研究.环境科学,2012,33(7):2265-2271.
    [32]卢亚芳,黄永春,黄世玉,周立红,陈国斌.厦门杏林湾水库浮游植物密度与生态因子的灰关联分析.台湾海峡,2002,21(2):209-216.
    [33]翁笑艳.山仔水库叶绿素a与环境因子的相关分析及富营养化评价.干旱环境监测,2006,20(2):73-78.
    [34]谢允田,魏民,吕军,王宏.南湖叶绿素a含量与湖水理化性质的多元分析.东北水利水电,1999,(1):43-45.
    [35]吕唤春,王飞儿,陈英旭,虞左明,方志发,周根娣.千岛湖水体叶绿素a与相关环境因子的多元分析.应用生态学报,2003,14(8):1347-1350.
    [36]刘东艳,孙军,钱树本.胶州湾浮游植物研究Ⅱ环境因子对浮游植物群落结构变化的影响.青岛海洋大学学报,2002,32(3):415-421.
    [37]曲克明,陈碧鹃,袁有宪,辛福言.氮磷营养盐影响海水浮游硅藻种群组成的初步研究.应用生态学报,2000,11(3):445-448.
    [38]山鹰,张玮,李典宝,王丽卿.上海市不同区县中小河道氮磷污染特征.生态学报,2015,35(15):5239-5247.
    [39]吕虹瑞,吕俊平,刘琪,谢树莲,冯佳,程革,张建民.太原汾河蓄水区2014年丰水期叶绿素的时空变化及环境因子相关性分析.水生生物学报,2016,40(6):1278-1286.
    [40]吴述园,葛继稳,苗文杰,程腊梅,冉桂花,曹华芬.三峡库区古夫河着生藻类叶绿素a的时空分布特征及其影响因素.生态学报,2013,33(21):7023-7034.
    [41]王冰,李利娟,程伟娜,吴冬玲.地表水中高锰酸盐指数、生化需氧量和化学需氧量的相关性分析研究.环境科学与管理,2016,41(4):134-136,147-147.
    [42]李志亮,仲跻文.生化需氧量、化学需氧量、高锰酸盐指数三者关系简析.水利技术监督,2015,23(1):5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700