用户名: 密码: 验证码:
东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE FORMING AGE AND GEOCHEMISTRY CHARACTERISTICS OF THE GRANODIORITES IN HARIZHA, EAST KUNLUN AND ITS TECTONIC SIGNIFICANCE
  • 作者:国显正 ; 贾群子 ; 李金超 ; 孔会磊 ; 姚学钢 ; 栗亚芝 ; 马忠元
  • 英文作者:GUO Xianzheng;JIA Qunzi;LI Jinchao;KONG Huilei;YAO Xuegang;LI Yazhi;MA Zhongyuan;Xi'an Center of Geological Survey,CGS;Geological Survey Institute, China University of Geosciences;The Third Geological and Mineral Exploration Academy of Qinghai Province;
  • 关键词:地球化学 ; 岩石成因 ; 岩浆序列 ; 花岗闪长岩 ; 东昆仑哈日扎
  • 英文关键词:geochemistry;;petrogenesis;;magmatic sequence;;granodiorite;;Harizha in East Kunlun
  • 中文刊名:DZLX
  • 英文刊名:Journal of Geomechanics
  • 机构:中国地质调查局西安地质调查中心;中国地质大学(武汉)地质调查研究院;青海省第三地质矿产勘查院;
  • 出版日期:2019-04-15
  • 出版单位:地质力学学报
  • 年:2019
  • 期:v.25
  • 基金:中国地质大调查项目(DD20160013,12120115022101)
  • 语种:中文;
  • 页:DZLX201902067
  • 页数:15
  • CN:02
  • ISSN:11-3672/P
  • 分类号:140-154
摘要
为探讨东昆仑哈日扎银多金属矿岩浆演化序列及其岩石成因,对哈日扎花岗闪长岩进行了年代学和地球化学研究。结果表明,哈日扎花岗闪长岩LA-ICP-MS锆石U-Pb年龄为423.8±4.3 Ma,形成于晚志留世;地球化学特征显示花岗闪长岩高硅,SiO_2介于71.21%~74.46%;高铝,Al_2O_3含量介于13.48%~14.46%;富钾贫钠,K_2O/Na_2O比值为1.32~1.54;A/CNK介于1.02~1.08,显示高钾钙碱性弱过铝质特征;稀土显示出轻稀土富集,重稀土亏损的右倾配分模式,富集Rb、Th、K元素,亏损Ba以及Nb、Ta、Ti等,具有I到S过渡型花岗岩特征,源区主要为上地壳砂屑岩部分熔融,是区域后碰撞伸展构造背景下的产物。
        In order to probe the genesis and magmatic evolution sequence of the granites in the Harizha sliver polymetallic deposit, geochronological and geochemical studies of the Harizha granodiorite was carried out in this paper. The results show that the Harizha granodiorite has LA-ICP-MS zircon U-Pb age of 423.8±4.3 Ma, indicating that it was formed in late Silurian epoch. It has high contents of SiO_2(71.21%~74.46%), Al_2O_3(13.48%~14.46%), with K_2O/Na_2O ratios ranging from 1.32 to 1.54,and A/CNK values varying from 1.02 to 1.08, respectively. Thus, the Harizha granodiorite belongs to the high K calc-alkaline weak peraluminous granite. The granodiorite has right declined REE distribution patterns, with strong enrichment of LREE and relative depletion of HREE. It is enriched in Rb, Th, K, depleted in Ba and Nb, Ta, Ti,and has characteristics of the I to S transitional granite. It could be mainly sourced from the partial melting of upper crust gabbros, which is the product of regional post-collision extensional tectonic background.
引文
[1] 姜春发. 中央造山带几个重要地质问题及其研究进展(代序)[J]. 地质通报, 2002, 21(8): 453~455.JIANG Chunfa. Several important geological problems about the Central Orogenic Belt and progress in its research (in lieu of preface)[J]. Geological Bulletin of China, 2002, 21(8): 453~455. (in Chinese with English abstract)
    [2] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43~51.MO Xuanxue, PAN Guitang. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43~51. (in Chinese with English abstract)
    [3] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403~414.MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East-Kunlun orogenic belt[J]. Geological Journal of China Universities, 2007, 13(3): 403~414. (in Chinese with English abstract)
    [4] 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281~290.Mo Xuanxue, DONG Guochen, ZHAO Zhidan, et al. Spatial and temporal distribution and characteristics of Granitoids in the Gangdese, Tibet and implication for crustal growth and evolution[J]. Geological Journal of China Universities, 2005, 11(3): 281~290. (in Chinese with English abstract)
    [5] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429~1454.
    [6] 郭正府, 邓晋福, 许志琴, 等. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 1998, 12(3): 344~352.GUO Zhengfu, DENG Jinfu, XU Zhiqin, et al. Late Palaeozoic Mesozoic intracontinental orogenic process and intermedate acidic igneous rocks from the Eastern Kunlun mountains of Northwestern China[J]. Geoscience, 1998, 12(3): 344~352. (in Chinese with English abstract)
    [7] Yu M, Feng C Y, Santosh M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017, 167: 103~123.
    [8] 王秉璋, 罗照华, 李怀毅, 等. 东昆仑祁漫塔格走廊域晚古生代-早中生代侵入岩岩石组合及时空格架[J]. 中国地质, 2009, 36(4): 769~782.WANG Bingzhang, LUO Zhaohua, LI Huaiyi, et al. Petrotectonic assemblages and temporal-spatial framework of the Late Paleozoic-Early Mesozoic intrusions in the Qimantage Corridor of the East Kunlun belt[J]. Geology in China, 2009, 36(4): 769~782. (in Chinese with English abstract)
    [9] 高永宝, 李文渊, 李侃, 等. 东昆仑祁漫塔格早中生代大陆地壳增生过程中的岩浆活动与成矿作用[J]. 矿床地质, 2017, 36(2): 463~482.GAo Yongbao, LI Wenyuan, LI Kan, et al. Magmatism and mineralization during Early Mesozoic continental accretion process in Qimantag, East Kunlun Mountains[J]. Mineral Deposits, 2017, 36(2): 463~482. (in Chinese with English abstract)
    [10] 国显正, 贾群子, 栗亚芝, 等. 东昆仑热水二长花岗岩地球化学特征、年代学及其构造意义[J]. 矿物岩石地球化学通报, 2016, 35(6): 1318~1328.GUO Xianzheng, JIA Qunzi, LI Yazhi, et al. Zircon U-Pb geochronology and geochemical characteristics of the Reshui Monzogranite in the Eastern Kunlun and their tectonic significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1318~1328. (in Chinese with English abstract)
    [11] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(3): 386~395.CHEN Hongwei, LUO Zhaohua, MO Xuanxue, et al. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China, 2005, 32(3): 386~395. (in Chinese with English abstract)
    [12] 翟明国, 张旗, 陈国能, 等. 大陆演化与花岗岩研究的变革[J]. 科学通报, 2016, 61(13): 1414~1420.ZHAI Mingguo, ZHANG Qi, CHEN Guoneng, et al. Adventure on the research of continental evolution and related granite geochemistry[J]. Chinese Science Bulletin, 2016, 61(13): 1414~1420. (in Chinese with English abstract)
    [13] 肖庆辉, 邓晋福, 邱瑞照, 等. 花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例[J]. 中国地质, 2009, 36(3): 594~622.XIAO Qinghui, DENG Jinfu, QIU Ruizhao, et al. A preliminary study of the relationship between granitoids and the growth of continental crust: a case study of the formation of key orogen granitoids in China[J]. Geology in China, 2009, 36(3): 594~622. (in Chinese with English abstract)
    [14] 宋忠宝, 张雨莲, 陈向阳, 等. 东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J]. 矿床地质, 2013, 32(1): 157~168.SONG Zhongbao, ZHANG Yulian, CHEN Xiangyang, et al. Geochemical characteristics of Harizha granite diorite-porphyry in East Kunlun and their geological implications[J]. Mineral Deposits, 2013, 32(1): 157~168. (in Chinese with English abstract)
    [15] 国显正, 贾群子, 孔会磊, 等. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义[J]. 地质科技情报, 2016, 35(5): 18~26.GUO Xianzheng, JIA Qunzi, KONG Huilei, et al. Zircon U-Pb geochronology and geochemistry of Harizha Quartz diorite in the Eastern section from East Kunlun[J]. Geological Science and Technology Information, 2016, 35(5): 18~26. (in Chinese with English abstract)
    [16] 张斌. 东昆仑哈日扎南区铅锌多金属矿床地质特征及成因探讨[D]. 西安: 长安大学, 2017.ZHANG Bin. Geological characteristics and genesis of Lead-Zinc Polymetallic deposit in the South of Harizha, East Kunlun mountains[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)
    [17] Yuan H L, Gao S, Liu X M, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively Coupled Plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353~370.
    [18] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400~2418.LI Yanguang, WANG Shuangshuang, LIU Minwu, et al. U-Pb dating study of baddeleyite by LA-ICP-MS: technique and application[J]. Acta Geologica Sinica, 2015, 89(12): 2400~2418. (in Chinese with English abstract)
    [19] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59~79.
    [20] Ludwig K R. User’s manual for isoplot/Ex, Version 3.00: a geochronological toolkit for microsoft excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4(2): 1~70.
    [21] 张斌, 孔会磊, 李智明, 等. 东昆仑哈日扎铅锌多金属矿区英云闪长岩锆石U-Pb定年、地球化学及其地质意义[J]. 地质科技情报, 2016, 35(5): 9~17.ZHANG Bin, KONG Huilei, LI Zhiming, et al. Zircon U-Pb dating, geochemical and geological significance of the tonalites from the Harizha lead-zinc polymetallic mine in east Kunlun mountains[J]. Geological Science and Technology Information, 2016, 35(5): 9~17. (in Chinese with English abstract)
    [22] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3~4): 215~224.
    [23] O'Connor J. T. A classification for quartz-rich igneous rocks based on feldspar ratios[M]. US Geological Survey Research, 1965, 79~84.
    [24] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662~665.
    [25] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313~345.
    [26] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589~1604.WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554~1569.
    [27] Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 2000, 28(7): 627~630.
    [28] Parrish R R, Noble S R. Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS)[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 183~213.
    [29] 王小龙, 袁万明, 冯星, 等. 东昆仑哈日扎多金属矿区花岗斑岩与闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2017, 36(7): 1158~1168.WANG Xiaolong, YUAN Wanming, FENG Xing, et al. LA-ICP-MS zircon U-Pb age and geological significance of granite porphyry and diorite in the Harizha polymetallic ore district, East Kunlun Mountains[J]. Geological Bulletin of China, 2017, 36(7): 1158~1168. (in Chinese with English abstract)
    [30] 青海省地质调查研究院. 青海省都兰县察汗乌苏河地区1∶5万区域地质矿产调查报告[R]. 2008.The Qinghai Geological Survey Institute. The survey report of 1: 50, 000 regional geological minerals in Chahanwusuhe area, Dulan City, Qinghai Province[R]. 2008. (in Chinese)
    [31] 青海省第三地质矿产勘查院. 青海省都兰县哈日扎地区铜多金属矿调查评价报告[R]. 2015.The Third Geological and Mineral Exploration Academy of Qinghai Province. The Copper Polymetallic Ore report of Investigation and Evaluation in Harizhan Area, Qinghai Province[R]. 2015. (in Chinese)
    [32] Chappell B W, White A J R. Two contrasting granite type[J]. Pacific Geology, 1974, 8: 173~174.
    [33] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325~343.
    [34] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605~626.
    [35] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217~1238.WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217~1238. (in Chinese with English abstract)
    [36] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621~626.ZHANG Qi, RAN Hao, LI Chengdong. A-type granite: what is the essence?[J]. Acta Petrologica et Mineralogica, 2012, 31(4): 621~626. (in Chinese with English abstract)
    [37] Foden J, Sossi P A, Wawryk C M. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite[J]. Lithos, 2015, 212~215: 32~44.
    [38] Mukherjee S. A review on out-of-sequence deformation in the Himalaya[J]. Geological Society, London, Special Publications, 2015, 142(1): 67~109.
    [39] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1~36.WU Fuyuan, LIU Zhichao, LIU Xiaochi, et al. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 2015, 31(1): 1~36. (in Chinese with English abstract)
    [40] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407~419.
    [41] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29~44.
    [42] Kühn A, Glodny J, Iden K, et al. Retention of precambrian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc Complex, W-Norway[J]. Lithos, 2000, 51(4): 305~330.
    [43] 崔圆圆, 赵志丹, 蒋婷, 等. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因[J]. 岩石学报, 2013, 29(11): 4011~4024.CUI Yuanyuan, ZHAO Zhidan, JIANG Ting, et al. Geochronology, geochemistry and petrogenesis of the early Paleozoic granitoids in Southern Jiangxi Province, China[J]. Acta Petrologica Sinica, 2013, 29(11): 4011~4024. (in Chinese with English abstract)
    [44] 刘艳宾, 莫宣学, 张达, 等. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 2014, 30(11): 3271~3286.LIU Yanbin, MO Xuanxue, ZHANG Da, et al. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province[J]. Acta Petrologica Sinica, 2014, 30(11): 3271~3286. (in Chinese with English abstract)
    [45] Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos, 2012, 134~135: 317~329.
    [46] Gao P, Zheng Y F, Zhao Z F. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266~267: 133~157.
    [47] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956~983.
    [48] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33(2): 221~238.XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2): 221~238. (in Chinese with English abstract)
    [49] 高永宝. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学, 2013.GAO Yongbao. The intermediate-acid intrusive magmatism and mineralization in Qimantag, East Kunlun Moutains[D]. Xi’an: Chang’an University, 2013. (in Chinese with English abstract)
    [50] 熊富浩. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义[D]. 武汉: 中国地质大学(武汉), 2014.XIONG Fuhao. Spatial-temporal pattern, petrogenesis and geological implications of Paleo-Tethyan granitoids in the East Kunlun orogenic belt (Eastern Segment)[D]. Wuhan: China University of Geosciences (Wuhan), 2014. (in Chinese with English abstract)
    [51] 于淼, 丰成友, 何书跃, 等. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 2017, 91(4): 703~723.YU Miao, FENG Chengyou, HE Shuyue, et al. The Qiman Tagh Orogen as a window to the crustal evolution of the northern Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(4): 703~723. (in Chinese with English abstract)
    [52] 张耀玲, 张绪教, 胡道功, 等. 东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄[J]. 地质力学学报, 2010, 16(1): 21~27, 50.ZHANG Yaoling, ZHANG Xujiao, HU Daogong, et al. SHRIMP Zircon U-Pb ages of rhyolite from the Naij Tal Group in the East Kulun orogenic belt[J]. Journal of Geomechanics, 2010, 16(1): 21~27, 50. (in Chinese with English abstract)
    [53] 马帅, 陈世悦, 孙娇鹏, 等. 祁漫塔格肯德可克火山岩锆石LA-ICP-MSU-Pb、40Ar/39Ar年龄及地质意义[J]. 地质力学学报, 2017, 23(4): 558~566.MA Shuai, CHEN Shiyue, SUN Jiaopeng, et al. A study on zircon LA-ICP-MS U-Pb and 40Ar/39Ar ages of volcanic rocks from kendekeke, Qimantage and the geological significance[J]. Journal of Geomechanics, 2017, 23(4): 558~566. (in Chinese with English abstract)
    [54] 国显正, 贾群子, 钱兵, 等. 东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景[J]. 地球科学与环境学报, 2017, 39(6): 735~750.GUO Xianzheng, JIA Qunzi, QIAN Bing, et al. Geochemical characteristics of eclogites and garnet-amphibolites in East Kunlun High pressure metamorphic belt and their geodynamic setting[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 735~750. (in Chinese with English abstract)
    [55] 刘彬, 马昌前, 张金阳, 等. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 2012, 28(6): 1785~1807.LIU Bin, MA Changqian, ZHANG Jinyang, et al. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes[J]. Acta Petrologica Sinica, 2012, 28(6): 1785~1807. (in Chinese with English abstract)
    [56] 施彬, 朱云海, 钟增球, 等. 东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义[J]. 地球科学, 2016, 41(1): 35~54.SHI Bin, ZHU Yunhai, ZHONG Zengqiu, et al. Petrological, geochemical characteristics and geological significance of the Caledonian Peraluminous granites in Heihai Region, Eastern Kunlun[J]. Earth Science, 2016, 41(1): 35~54. (in Chinese with English abstract)
    [57] 郝娜娜, 袁万明, 张爱奎, 等. 东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境[J]. 地质论评, 2014, 60(1): 201~215. HAO Nana, YUAN Wanming, ZHANG Aikui, et al. Late Silurian to early devonian Granitoids in the Qimantage area, East Kunlun mountains: LA-ICP-MS zircon U-Pb ages, geochemical features and geological setting[J]. Geological Review, 2014, 60(1): 201~215. (in Chinese with English abstract)
    [58] 于淼, 丰成友, 保广英, 等. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 2013, 32(1): 55~76. YU Miao, FENG Chengyou, BAO Guangying, et al. Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province[J]. Mineral Deposits, 2013, 32(1): 55~76. (in Chinese with English abstract)
    [59] 马圣钞, 丰成友, 张道俊, 等. 青海虎头崖矽卡岩型多金属矿床蚀变矿化分带特征研究[J]. 矿床地质, 2013, 32(1): 109~121.MA Shengchao, FENG Chengyou, ZHANG Daojun, et al. Alteration and mineralization zoning of Hutouya polymetallic deposit in Qimantag area, Qinghai Province[J]. Mineral Deposits, 2013, 32(1): 109~121. (in Chinese with English abstract)
    [60] 张爱奎, 刘光莲, 丰成友, 等. 青海虎头崖多金属矿床地球化学特征及成矿—控矿因素研究[J]. 矿床地质, 2013, 32(1): 94~108. ZHANG Aikui, LIU Guanglian, FENG Chengyou, et al. Geochemical characteristics and ore-controlling factors of Hutouya polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 2013, 32(1): 94~108. (in Chinese with English abstract)
    [61] 高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束[J]. 大地构造与成矿学, 2018, 42(1): 96~107. GAO Yongbao, LI Kan, QIAN Bing, et al. The metallogenic chronology of Kaerqueka deposit in Eastern Kunlun: evidences from molybdenite Re-Os and phlogopite Ar-Ar ages[J]. Geotectonica et Metallogenia, 2018, 42(1): 96~107. (in Chinese with English abstract)
    [62] 于淼, 丰成友, 赵一鸣, 等. 青海卡而却卡铜多金属矿床流体包裹体地球化学及成因意义[J]. 地质学报, 2014, 88(5): 903~917. YU Miao, FENG Chengyou, ZHAO Yiming, et al. Fluid inclusion geochemistry in the Kaerqueka Copper Polymetallic Deposit, Qinghai Province and its genetic significance[J]. Acta Geologica Sinica, 2014, 88(5): 903~917. (in Chinese with English abstract)
    [63] 李大新, 丰成友, 赵一鸣, 等. 青海卡而却卡铜多金属矿床蚀变矿化类型及矽卡岩矿物学特征[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1818~1830. LI Daxin, FENG Chengyou, ZHAO Yiming, et al. Mineralization and alteration types and Skarn mineralogy of Kaerqueka copper Polymetallic deposit in Qinghai province[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1818~1830. (in Chinese with English abstract)
    [64] 许远平, 谢万洪, 杨永峰, 等. 青海东昆仑那更康切尔银矿地质特征及找矿远景浅析[J]. 新疆地质, 2014, 32(1): 113~117.XU Yuanping, XIE Wanhong, YANG Yongfeng, et al. Geological characteristics and prospecting perspective of NaGenKangQieEr Silver deposit in Eastern Kunlun mountain of Qinghai[J]. Xinjiang Geology, 2014, 32(1): 113~117. (in Chinese with English abstract)
    [65] 李敏同, 李忠权. 东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征[J]. 矿物学报, 2017, 37(6): 771~781. LI Mintong, LI Zhongquan. Constrains of S-Pb-C-O isotope compositions on the origin of Nagengkangqieer silver deposit, the Eastern Kunlun mountains, China[J]. Acta Mineralogica Sinica, 2017, 37(6): 771~781. (in Chinese with English abstract)
    [66] 李敏同,陈晓东,许远平,等. 东昆仑那更康切尔沟银矿床银矿物特征及成矿元素沉淀机制浅析[J]. 地质论评,2018, 64(3): 723~736.Li Mintong, Chen Xiaodong, Xu Yuanping, et al. Characteristics of Silver Minerals of Nagengkangqie′ergou Silver Deposit in Eastern Kunlun Orogenic Belt and a Brief Analysis of the Precipitation Mechanism of Ore-forming Elements[J]. Geological Review, 2018, 64(3): 723~736. (in Chinese with English abstract)
    [67] 王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(4): 597~616. WANG Zengzhen, HAN Baofu, FENG Chengyou, et al. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 597~616. (in Chinese with English abstract)
    [68] 郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(8): 1203~1211. GUO Tongzhen, LIU Rong, CHEN Fabin, et al. LA-MC-ICPMS zircon U-Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantag Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, 2011, 30(8): 1203~1211. (in Chinese with English abstract)
    [69] 张照伟, 李文渊, 钱兵, 等. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 2015, 42(3): 438~451. ZHANG Zhaowei, LI Wenyuan, QIAN Bing, et al. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in Eastern Kunlun orogenic belt and its prospecting significance[J]. Geology in China, 2015, 42(3): 438~451. (in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700