用户名: 密码: 验证码:
粉末高温合金FGH97疲劳裂纹扩展行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Crack Growth Behavior of FGH97 P/M Superalloy
  • 作者:肖磊 ; 朱晓闽 ; 张高翔 ; 王冲
  • 英文作者:Xiao Lei;Zhu Xiaomin;Zhang Gaoxiang;Wang Chong;Shenzhen Wedge Central South Research Institute Co., Ltd;Shenzhen Wedge Aviation Technology Responsibilities Co., Ltd;
  • 关键词:FGH97粉末冶金高温合金 ; 氩气雾化制粉 ; 旋转电极制粉 ; 疲劳裂纹扩展
  • 英文关键词:FGH97 P/M superalloy;;argon atomization process;;plasma rotating electrode process;;fatigue crack growth
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:深圳市万泽中南研究院有限公司;深圳市万泽航空科技有限责任公司;
  • 出版日期:2019-05-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.394
  • 基金:广东省珠江人才计划项目和深圳市科技创新委员会项目(KQTD2015032716463668)
  • 语种:中文;
  • 页:COSE201905038
  • 页数:8
  • CN:05
  • ISSN:61-1154/TG
  • 分类号:267-274
摘要
研究了氩气雾化制粉+热等静压工艺成型所制备的粉末高温合金FGH97在650℃下的疲劳裂纹扩展性能,并与俄制旋转电极制粉+热等静压工艺成型的EP741NP合金盘件进行对比;重点分析了不同制粉工艺、氧含量、晶粒度和γ'尺寸等因素对裂纹扩展速率的影响。结果表明:氩气雾化制粉+热等静压工艺制备的FGH97合金试验盘具有比俄制旋转电极制粉+热等静压工艺制备的EP741NP合金盘件更好的疲劳裂纹扩展抗力;分析发现晶粒度对氩气雾化制粉+热等静压工艺制备的试验盘裂纹扩展性能影响较为明显,晶粒度越大,疲劳裂纹扩展速率越低;γ'相尺寸的影响次之,在一定范围内γ'相尺寸增大,疲劳裂纹扩展速率略为降低;而氧含量在100~150μg/g范围内对疲劳裂纹扩展性能无显著影响。
        Fatigue crack growth behavior at 650 ℃ of a P/M superalloy FGH97, which was made by argon atomization(AA) + hot isostatic pressing(HIP) process, was investigated. Comparison tests were conducted using a Russian EP741 NP disk made of plasma rotating electrode process(PREP) + HIP process. The effects of different powder making methods, oxygen content, grain size and gamma prime size on the fatigue crack growth rate were evaluated. The results reveal that the AA + HIP processed FGH97 test disk has a lower fatigue crack growth rate than EP741 NP disk. Grain size is the dominant factor in the fatigue crack growth behavior; the larger the grain size, the lower the fatigue crack growth rate. While the γ' phase size takes the second place; in a certain range the crack growth rate decreases slightly with the increase of the γ' phase size. Oxygen content between 100~150 μg/g has no significant effect on the crack growth rate.
引文
[1]Sun Li(孙黎),Shao Changxing(邵长星),Zeng Yingxue(曾莹雪).China Science and Technology Information(中国科技信息)[J],2015(5):205
    [2]Zhang Yiwen(张义文),Liu Jiantao(刘建涛).Chinese Material(中国材料进展)[J],2013,32(1):1
    [3]Zhang Ying(张莹),Zhang Yiwen(张义文),Zhang Na(张娜)et al.Journal of Aeronautical Materials(航空材料学报)[J],2008(6):5
    [4]Liu Hao(刘浩),Bao Rui(鲍蕊),Yue Chenyang(岳晨阳)et al.Journal of Aerospace Power(航空动力学报)[J],2016,31(6):1400
    [5]Liu Junbin(刘君滨).China New Technology and New Products(中国新技术新产品)[J],2016(5):72
    [6]Zhang Ying(张莹),Zhang Yiwen(张义文),Zhang Na(张娜)et al.Acta Metallurgica Sinica(金属学报)[J],2010,46(4):444
    [7]Guo Weibin(郭伟彬).Physical and Chemical Inspection(理化检验-物理分册)[J],2008(5):231
    [8]Powell A,Bain K,Wessman A et al.Proceedings of the 13th International Symposium of Superalloys[C].Hoboken,NJ,USA:John Wiley&Sons,Inc,2016:189
    [9]Hardy M C,Zirbel B,Shen G et al.Proceedings of the 10th International Symposium on Superalloys[C].Champion,PA,USA:The Minerals,Metals&Materials Society,2004:83
    [10]Er Qiliang(佴启亮),Dong Jianxin(董建新),Zhang Maicang(张麦仓)et al.Journal of Engineering Science(工程科学学报)[J],2016,38(2):248
    [11]Yao Caogen(姚草根),Meng Shuo(孟烁),Li Xiulin(李秀林)et al.Powder Metallurgy Materials Science and Engineering(粉末冶金材料科学与工程)[J],2017,22(1):33
    [12]Bai Q,Lin J,Tian G et al.Journal of Powder Metallurgy and Mining[J],2015,4:127
    [13]May J R,Hardy M C,Bache M R et al.Advanced Materials Research[J],2011,278:265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700