用户名: 密码: 验证码:
凹凸腔方波型微混合器的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Square Wave Micro-Mixer with Concave-Convex Cavity
  • 作者:李晓勇 ; 陈晔
  • 英文作者:LI Xiaoyong;CHEN Ye;School of Mechanical and Power Engineering,Nanjing University of Technology;
  • 关键词:微混合器 ; 凹凸腔 ; 方波型 ; 混合强度 ; 压降
  • 英文关键词:micro-mixer;;concave-convex cavity;;square-wave type;;mixing performance;;pressure drop
  • 中文刊名:QGJX
  • 英文刊名:Light Industry Machinery
  • 机构:南京工业大学机械与动力工程学院;
  • 出版日期:2019-01-22 14:54
  • 出版单位:轻工机械
  • 年:2019
  • 期:v.37;No.157
  • 语种:中文;
  • 页:QGJX201901008
  • 页数:6
  • CN:01
  • ISSN:33-1180/TH
  • 分类号:49-54
摘要
通过对微混合器的通道结构进行优化或设计新型的通道,改变流体的运动状态,实现流体之间的快速混合和提高混合效率是当今微混合器研究的重点。为了进一步提高微混合器的混合效率,课题组设计了一种带有凹凸腔的方波型微混合器。在不同的Re下,对设计的微混合器进行数值模拟,以混合强度和压降作为评价指标,得到了凹凸腔方波型微混合器的最优结构参数。研究结果表明:凹凸腔微混合器的混合强度和压降都高于方波型微混合器,在Re=10时混合强度提升最显著。对2种结构进行流场分析,发现流体流经凹凸腔结构时能够产生涡流,层流状态被打破,流体之间的接触面积增大,混合强度得到提高。
        Optimizing the channel structure of the micro-mixer or designing a new type of channel,changing the flow state of the fluid,rapid mixing fluids and improving mixing efficiency are the focus of the current micro-mixer research.In order to further improve the mixing efficiency of the micro-mixer,a square-wave type micro-mixer with concaveconvex cavities was designed. Numerical simulation of the designed micro-mixer under different Reynolds numbers( Re)was carried out,with the mixing strength and pressure drop as the evaluation indexes,the optimal structural parameters of the concave-convex cavity square-wave type micro-mixer were achieved. The results show that the mixing strength of the concave-convex cavity micro-mixer is higher than the square-wave type micro-mixer,the pressure drop is also increased,the mixing strength is most significant at Re = 10. By analyzing the flow field of the two structures,it is found that the fluid flows through the concave-convex cavity structure,the laminar flow state is broken and the contact area between the fluids is increased,the mixing strength is improved.
引文
[1]姜枫,刘国君,杨志刚,等.微混合器的研究现状[J].微纳电子技术,2016,53(3):166-176.
    [2]JEONG G S,CHUNG S,KIM C B,et al.Applications of micro-mixing technology[J].Analyst,2010,135(3):460-473.
    [3]陈雪叶,李铁川.被动式微流控混合器的研究进展[J].微纳电子技术,2013,50(11):710-714.
    [4]李健,夏国栋,李艺凡.结构参数对非对齐入口式T型微混合器内混合特性的影响[J].北京工业大学学报,2014,40(2):296-301.
    [5]余海燕.微流体混合影响因素数值分析[D].天津:天津大学,2006:5.
    [6]何秀华,颜杰,王岩.内置周期挡板的T-型微混合器[J].光学精密工程,2015,23(10):2878.
    [7]CAPRETTO L,CHENG W,HILL M,et al.Micromixing within microfluidic devices[J].Topic in Current Chemistry,2011,304:27-68.
    [8]程天琦.新型分合式微通道混合性能的研究[D].西安:西北大学,2015:1.
    [9]王岩.高回流循环被动式微混合器的特性研究[D].镇江:江苏大学,2017:3.
    [10]陈雪叶,李铁川.被动式微混合器微通道外形及障碍物布局[J].光学精密工程,2015,23(10):403-409.
    [11]鲁聪达,薛浩,吴化平,等.3D-不对称菱形被动式微混合器混合特性[J].光学精密工程,2017,25(9):2377-2386.
    [12]KUO Junan,JIANG Liren.Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform[J].Microsystem Technologies,2014,20(1):91-99.
    [13]付强.一种新型分合式微混合器的结构设计和试验研究[D].杭州:浙江工业大学,2016:4.
    [14]MENGEAUD V,JOSSERAND J,GIRAULT H H.Mixing processes in a zigzag microchannel:Finite Element simulations and optical study[J].Analytical Chemistry,2002,74(16):4279-4286.
    [15]CHEN Xueye,LI Tiechuan,ZENG Hong,et al.Numerical and experimental investigation on micromixers with serpentine microchannels[J].International Journal of Heat and Mass Transfer,2016,98:131-140.
    [16]高放.被动式微混合器的数值研究及优化[D].杭州:浙江大学,2017:21.
    [17]李迪.低雷诺数液-液两相流体的流动与混合[D].哈尔滨:哈尔滨工业大学,2015:18.
    [18]刘赵淼,王文凯,逄燕.扩展腔对方波型微混合器混合性能的影响研究[J].力学学报,2018,50(2):254-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700