用户名: 密码: 验证码:
An improved differential algorithm for the critical-angle refractometer
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An improved differential algorithm for the critical-angle refractometer
  • 作者:叶骏伟 ; 夏珉 ; 杨克成
  • 英文作者:YE Jun-wei;XIA Min;YANG Ke-cheng;Wuhan National Laboratory for Optoelectronics, Huazhong Institute of Electro-Optics;School of Optical and Electronic Information, Huazhong University of Science and Technology;
  • 中文刊名:OELJ
  • 英文刊名:光电子快报(英文版)
  • 机构:Wuhan National Laboratory for Optoelectronics Huazhong Institute of Electro-Optics;School of Optical and Electronic Information Huazhong University of Science and Technology;
  • 出版日期:2019-03-01
  • 出版单位:Optoelectronics Letters
  • 年:2019
  • 期:v.15;No.83
  • 基金:supported by the National Natural Science Foundation of China(Nos.61008050,41006019,41276042 and 61505063)
  • 语种:英文;
  • 页:OELJ201902008
  • 页数:5
  • CN:02
  • ISSN:12-1370/TN
  • 分类号:34-38
摘要
Due to the limit of the pixel size of the charge-coupled device(CCD) or complementary metal oxide semiconductor(CMOS) sensor, the traditional differential algorithm has a limited measuring accuracy by determining the critical angle in integral pixel.In this paper, we present a practical algorithm based on the centroid value of the reflective ratio around the critical angle pixel to address the traditional differential algorithm problem of determining the critical angle under sub-pixel in a critical angle refractometer(CAR).When the change of refractive index(RI) of a liquid sample is beyond the sensitivity of the traditional differential algorithm, the RI of the liquid can be obtained by using the centroid value of reflectivity around the critical angle pixel.The centroid value is associated with the RI change of the liquid in sub-pixel.Demonstrated by both theoretical analyses and experimental results using saline solutions with RI that changes in sub-pixel tested through the reflective CAR, the algorithm is found to be computationally effective and robust to expand the measuring accuracy of the Abbe-type refractometer in sub-pixel.
        Due to the limit of the pixel size of the charge-coupled device(CCD) or complementary metal oxide semiconductor(CMOS) sensor, the traditional differential algorithm has a limited measuring accuracy by determining the critical angle in integral pixel.In this paper, we present a practical algorithm based on the centroid value of the reflective ratio around the critical angle pixel to address the traditional differential algorithm problem of determining the critical angle under sub-pixel in a critical angle refractometer(CAR).When the change of refractive index(RI) of a liquid sample is beyond the sensitivity of the traditional differential algorithm, the RI of the liquid can be obtained by using the centroid value of reflectivity around the critical angle pixel.The centroid value is associated with the RI change of the liquid in sub-pixel.Demonstrated by both theoretical analyses and experimental results using saline solutions with RI that changes in sub-pixel tested through the reflective CAR, the algorithm is found to be computationally effective and robust to expand the measuring accuracy of the Abbe-type refractometer in sub-pixel.
引文
[1]Augusto Garcia-Valenzuela and Humberto Contreas-Tello,Opt.Lett.38,775(2013).
    [2]Wenping Guo,Min Xia,Wei Li,Jie Dai and Kecheng Yang,Rec.Sci.Instrum.82,053108(2011).
    [3]Junwei Ye,Min Xia,Hao Liu,Wei Li,Wenping Guo,Xiong changxin and Kecheng Yang,Europhysics Letters 104,20001(2013).
    [4]Junwei Ye,Kecheng Yang,Hao Liu,Jie Dai,Wenping Guo,Wei Li and Min Xia,Optics&Laser Technology65,175(2015).
    [5]Hao Liu,Junwei Ye,Kecheng Yang,Min Xia,Wenping Guo and Wei Li,Applied Optics 54,6046(2015).
    [6]Michael Mc Climans,Charles La Plante,David Bonner and S.Bali.,Appl.Opt.45,6477(2006).
    [7]Wenping Guo,Min Xia,Wei Li,Jie Dai,Xiaohui Zhang and Kecheng Yang,Meas.Sci.Technol.23,47001(2012).
    [8]Jukka A.Raty and Kai-Erik Peiponen,Applied Spectroscopy 53,1123(1999).
    [9]Llpo Niskanen,Jukka Raty and Kai-Erik Peiponen,Opt.Lett.32,862(2007).
    [10]W.R.Calhoun,H.Maeta,S.Roy,L.M.Bail and S.Bail,J.Dairy.Sci.93,3497(2010).
    [11]W.R.Calhoun,H.Maeta,A.Combs,L.M Bali and S.Bali.,Opt.Lett.35,1224(2010).
    [12]Augusto Garcia-Valenzuela and Humberto Contreas-Tello,Opt.Express 13,6723(2005).
    [13]Mansur Mohammadi,Adv.Colloid Interface Sci.62,17(1995).
    [14]M.Born and E.Wolf,Principles of Optics,7th ed.,Cambridge University Press,Cambridge,UK,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700