用户名: 密码: 验证码:
利用单颗粒气溶胶质谱仪研究燃煤尘质谱特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the source spectral characteristics of particles emitted from coal combustion by SPAMS
  • 作者:徐娇 ; 王海婷 ; 马咸 ; 李梅 ; 李立伟 ; 史国良 ; 王玮 ; 冯银厂
  • 英文作者:XU Jiao;WANG Haiting;MA Xian;LI Mei;LI Liwei;SHI Guoliang;WANG Wei;FENG Yinchang;State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University;Institute of Mass Spectrometer and Atmospheric Environment, Jinan University;Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution;Tianjin-Tianbinruicheng Environmental Technology and Engineering Co., Ltd.;College of Computer Science, Nankai University;
  • 关键词:气溶胶单颗粒质谱 ; 烟道气 ; 再悬浮采样器 ; 燃煤尘 ; 质谱特征 ; 源成分谱 ; 粒径分布
  • 英文关键词:single particle aerosol mass spectrometer;;stack gas;;re-suspension sampler;;coal combustion dust;;spectrum signature;;source profile;;size distribution
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:南开大学环境科学与工程学院国家环境保护城市空气颗粒物污染防治重点实验室;暨南大学质谱仪器与大气环境研究所;广东省大气污染在线源解析系统工程技术研究中心;天津天滨瑞成环境技术工程有限公司;
  • 出版日期:2018-07-06 11:03
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(No.2016YFC0208500,2016YFC0208501);; 国家自然科学基金(No.41775149);; 中央高校基本科研业务费专项;; 天津市自然科学基金(No.17JCYBJC23000)
  • 语种:中文;
  • 页:HJXX201901005
  • 页数:10
  • CN:01
  • ISSN:11-1843/X
  • 分类号:27-36
摘要
采用单颗粒气溶胶质谱仪(SPAMS)和再悬浮采样器联用的方式对燃煤电厂烟道气样品和下载灰样品的质谱特征进行测定,并使用颗粒物粒径分级采样仪ELPI测定其粒径分布特征.研究表明,SPAMS监测得到的粒径分布与ELPI结果差异较大,SPAMS对于500 nm以上粒径段检测效果较好;两个样品正谱图中有非常明显的锂、钙、钛、铝等金属组分信号和碳组分信号特征,负谱图中硅酸盐、硝酸盐和硫酸盐等信号比较明显,并且随着粒径的增加碳组分、硫酸盐和硝酸盐等组分对应的信号强度逐渐减弱,而硅酸盐、铝、钙和钛等组分对应的信号强度逐渐增强;对两个样品使用ART-2a聚类获得多个颗粒物类别,分析表明,它们均含有元素碳二次类(硫酸盐和硝酸盐缩写为二次Sec)、有机碳二次类、铝元素碳类、铝钙硅酸盐类和富硅酸盐类等颗粒物类别,并且随着粒径的增加金属硅酸盐颗粒出现频率增大,而含碳颗粒与硫酸盐出现频率降低.但烟道气样品和下载灰样品的质谱特征呈显著差异,下载灰样品更能代表燃煤源真实排放特征.建议在今后建立基于单颗粒质谱固定源成分谱时,应使用单颗粒气溶胶质谱仪在外场进行实测,并使用聚类的方法提取不同粒径段上的源质谱特征,可能会取得更好的效果.
        SPAMS and Re-suspension sampler were adopted to measure mass spectral signatures of fly ashes in stack gas and ashes captured by emission control devices of a power plant, and ELPI was used to analyze its size distribution. The size distributions of power plant emitted particles measured by SPAMS and ELPI are different, and SPAMS has better performance on particles larger than 500 nm. A significant amount of Li, Al, Ca and Ti were observed in the positive mass spectrum of both samples, while silicate, nitrate and sulfate peaked in the negative mass spectrum. As particle sizes increase, intensities of carbonaceous components, sulfate and nitrate decrease, but intensities of silicate, aluminum, calcium and titanium increase. Mass spectral features of two samples were extracted by ART-2 a, and the results indicated that both of them contain elemental carbon-Sec(sulfate and nitrate are shorted as Sec), organic carbon-Sec, aluminum-elemental carbon, aluminum-calcium-silicate, and silicate rich classes. With the size growing, the appearing frequency of metal-silicate particles increase, while carbon-rich particles and sulfate-rich particles decrease. But, there are significant difference between mass spectral features of two samples, and stack gas samples are more representative of the real emission character. The results suggest in the future study to characterize chemical fingerprints for individual particles from emission sources, single particle mass spectrometry should be applied in the field to analyze in real time, and clustering method should be applied to extract spectrum characteristics in different size ranges for getting better results.
引文
Allen J O,Fergenson D P,Gard E E,et al.2000.Particle detection efficiencies of aerosol time of flight mass spectrometers under ambient sampling conditions[J].Environmental Science & Technology,34(1):211-217
    Beddows D C S,Dall′Osto M,Olatunbosun O A,et al.2016.Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry[J].Atmospheric Environment,129:167-175
    Bi X,Simoneit B R T,Sheng G,et al.2008.Composition and major sources of organic compounds in urban aerosols[J].Atmospheric Research,88(3/4):256-265
    Bond T C,Streets D G,Yarber K F.2004.A technology-based global inventory of black and organic carbon emissions from combustion[J].Journal of Geophysical Research,109(D14), DOI:10.1029/2003JD003697
    陈魁,白志鹏.2006.颗粒物再悬浮采样器研制与应用[J].环境工程,24(5):67-68
    Dallosto M,Beddows D C,Gietl J K,et al.2014.Characteristics of tyre dust in polluted air:Studies by single particle mass spectrometry (ATOFMS) [J].Atmospheric Environment,94:224-230
    Damle A S,Ensor D S,Ranade M B.1982.Coal combustion aerosol formation mechanisms-A review[J].Aerosol Science and Technology,1:119-133
    Dall′Osto M,Harrison R M,Coe H,et al.2009.Real time chemical characterization of local and regional nitrate aerosols[J].Atmospheric Chemistry & Physics,9:3709-3720
    付怀于,闫才青,郑玫,等.2014.在线单颗粒气溶胶质谱 SPAMS 对细颗粒物中主要组分提取方法的研究[J].环境科学,35(11):4070-4077
    Gao J,Tian H,Cheng K, et al.,2015.The variation of chemical characteristics of PM2.5,and PM10,and formation causes during two haze pollution events in urban beijing,china[J].Atmospheric Environment,107:1-8
    Guazzotti S A,Suess D T,Coffee K R,et al.2003.Characterization of carbonaceous aerosols outflow from India andArabia:Biomass/biofuel burning and fossil fuel combustion[J].Journal of Geophysical Research,108(D15),1211-1222
    Giechaskiel B,Maricq M,Ntziachristos L,et al.2014.Review of motor vehicle particulate emissions sampling and measurement:From smoke and filter mass to particle number[J].Journal of Aerosol Science,67:48-86
    Giorio C,Tapparo A,Dall′Osto M,et al,2015,Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single particle ATOFMS spectra[J].Environmental Science & Technology,49:3330-3340
    Haynes B S,Neville M,Quann R J,et al.1982.Factors governing the surface enrichment of fly-ash in volatile trace species[J].Journal of Colloid and Interface Science,87:266-278
    Healy R M,Hellebust S,Kourtchev I,et al.2010.Source apportionment of PM2.5 in Cork Harbour,Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements[J].Atmospheric Chemistry and Physics,10(19):9593-9613
    Healy R M,Sciare J,Poulain L,et al.2012.Sources and mixing state of size-resolved elemental carbon particles in a European megacity:Paris[J].Atmospheric Chemistry and Physics,12(4):1681-1700
    黄正旭,高伟,董俊国,等.2010.实时在线单颗粒气溶胶飞行时间质谱仪的研制[J].质谱学报,31(6):331-336
    Jimenez E,Linares C,Rodriguez L F,et al.2009.Short-term impact of particulate matter (PM2.5) on daily mortality among the over-75 age group in Madrid (Spain) [J].Science of the Total Environment,407:5486-5492
    李松,郎建垒,程水源,等.2016.典型固定燃烧源颗粒物成分谱特征研究[J].安全与环境学报,16(5):312-319
    Li L,Tan G B,Zhang L,et al.2013.Analysis of diesel exhaust particles using single particle aerosol mass spectrometry[J].Chinese Journal of Analytical Chemistry,41(12):1831-1836
    Li L,Li M,Huang Z,et al.2014.Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing[J].Atmospheric Environment,94:323-331
    Li L,Huang Z X,Dong J G,et al.2011.Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles[J].International Journal of Mass Spectrometry,303(2/3):118-124
    Linak W P,Wendt J O L.1994.Trace metal transformation mechanisms during coal combustion[J].Fuel Processing Technology,39:173-198
    Liu D Y,Wenzel R J,Prather K A.2003.Aerosol time-of-flight mass spectrometry during the Atlanta supersite experiment:1.Measurements[J].Journal of Geophysical Research:Atmospheres,108,DOI:10.1029/2001JD001562
    陆炳,孔少飞,韩斌,等.2011.燃煤锅炉排放颗粒物成分谱特征研究[J].煤炭学报,36(11):1928-1933
    Ma S X.2010.Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou,China[J].Atmospheric Research,98:176-182
    Mimura T,Ichinose T,Yamagami S,et al.2014.Airborne particulate matter (PM2.5) and the prevalence of allergic conjunctivitis in Japan[J].Science of the Total Environment,487:493-499
    Mirzaei M,Mosaffa M,Mohammadi S.2015.Variation-aware approaches with power improvement in digital circuits[J].Integration,the VLSI Journal,48:83-100
    Mu Y Y,Lou S R,Chen C H,et al.2013.Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)[J].Enviromental Science,34(6):2071-2080
    潘凤萍,陈华忠,庞志强,等. 2014.燃煤电厂锅炉中颗粒物在选择性催化还原、静电除尘器和烟气脱硫入口处的分布特性[J].中国电机工程学报,34(32):5728-5733
    Pratt K A,Prather K A.2009.Real-time,single-particle volatility,size,and chemical composition measurements of aged urban aerosols[J].Environmental Science & Technology,43:8276-8282
    Pougnet M A B,Wyrley-Birch J M,Orren M J.1990.The boron and lithium content of South African coals and coal ashes[J].International Journal of Environmental Analytical Chemistry,38(4):539-549
    Noble C A,Prather K A. 1996. Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles[J].Environmental Science & Technology,30(9):2667-2680.
    Quann R J,Neville M,Janghorbani M.1982.Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system[J].Environmental Science & Technology,16:776-781
    Shi G L,Xu J,Peng X,et al.2016.Using a new WALSPMF model to quantify the source contributions to PM2.5 at a harbour site in China[J].Atmospheric Environment,126:66-75
    Shields L G,Suess D T, Prather K A.2007.Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment[J].Atmospheric Environment,41(18):3841-3852
    Silva P J,Liu D Y,Noble C A,et al.1999.Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species[J].Environmental Science & Technology,33(18):3068-3076
    Silva P J,Carlin R A,Prather K A.2000.Single particle analysis of suspended soil dust from Southern California[J].Atmospheric Environment,34(11):1811-1820
    Song X H,Hopke P K,Fergenson D P,et al.1999.Classification of single particles analyzed by ATOFMS using an artificial neural network,ART-2A[J].Analytical Chemistry,71:860-865
    Sun Y L,Wang Z F,Fu P Q,et al.2013.Aerosol composition,sources and processes during wintertime in beijing,China[J].Atmospheric Chemistry and Physics,13(9):4577-4592
    Spencer M T,Holecek J C,Corrigan C E,et al.2007.Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the indian ocean[J].Journal of Geophysical Research,113(D16):280-288
    Suriyawong A,Gamble M,Lee M H.2006.Submicrometer particle formation and mercury speciation under O2-CO2 coal combustion[J].Energy Fuels,20:2357-2363
    Tian Y Z,Wang J,Peng X,et al.2014.Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5[J].Atmospheric Chemistry and Physics,14(18):9469-9479
    Toner S M,Shields L G,Sodeman D A,et al.2008.Using mass spectral source signatures to apportion exhaust particles from gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS[J].Atmospheric Environment,42(3):568-581
    Toner S M,Sodeman D A,Prather K A.2006.Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry[J].Environmental Science & Technology,40(12):3912-3921
    王毓秀,彭林,王燕,等.2016.电厂燃煤烟尘PM2.5中化学组分特征[J].环境科学,37(1):60-65
    Wang X,Williams B J,Wang X,et al.2013.Biswas characterization of organic aerosol produced during pulverized[J].Atmospheric Chemistry and Physics,13:10919-10932
    Wang S,Luo K.2017,Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China[J].Atmospheric Environment,162:45-54
    Wang X,Tang Y,Huang Y P,et al.2013.Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace[J].Atmospheric Chemistry and Physics,13(21):10919-10932
    Xu J,Li M,Shi G L,et al.2017.Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer[J].Science of the Total Environment,598:341
    Xu J,Wang H,Li X,et al.2018.Refined source apportionment of coal combustion sources by using single particle mass spectrometry[J].Science of the Total Environment, 627:633-646
    Zhang Y M,Zhang X Y,Sun J Y,et al.2014.Chemical composition and mass size distribution of PM1 at an elevated site in central east China[J].Atmospheric Chemistry and Physics,14(22):12237-12249
    Zhang R,Jing J,Tao J,et al.2013.Chemical characterization and source apportionment of PM2.5 in Beijing,seasonal perspective[J].Atmospheric Chemistry and Physics,13:7053-7074
    Zhang G,Bi X,Chan L Y,et al.2012.Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou,China[J].Atmospheric Environment,55:121-126
    Zhang Y,Wang X,Chen H,et al.,2009.Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry[J].Chemosphere,74(4):501-507
    张芳,王淑芳,郭长娟,等.2008.单颗粒气溶胶实时在线监测飞行时间质谱仪的研制[J].现代仪器与医疗,14(1):49-52
    Zhuang Y,Biswas P.2001.Submicrometer particle formation and control in a bench-scale pulverized coal combustor[J].Energy Fuels,15:510-516
    周科.2011.燃煤细微颗粒物生成特性与炉内控制的研究[D]武汉:华中科技大学
    赵永椿,张军营,张富强,等.2007.燃煤高钙灰的组成及其演化机制的研究[J].中国电机工程学报,27(29):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700